

Louvre Airflow Test 421/L.050.00

Final Report 60554/2

Carried out for nv RENSON Sunprotection-Projects sa

By Andrew Freeth

27 November 2018

Louvre Airflow Test 421/L.050.00

Carried out for:

nv RENSON Sunprotection-Projects sa Maalbeekstraat 6 8790 Waregem Belgium

- Contract: Final Report 60554/2
- Date: 27 November 2018
- Issued by: **BSRIA Limited** Old Bracknell Lane West, Bracknell, Berkshire RG12 7AH UK
- Telephone: +44 (0)1344 465600
- Fax: +44 (0)1344 465626

E: bsria@bsria.co.uk W: www.bsria.co.uk

Compiled by:	Approved by:		
Name: Andrew Freeth	Name: Mark Roper		
Title: Senior Test Engineer	Title: Principal Test Engineer		

DISCLAIMER

This report must not be reproduced except in full without the written approval of an executive director of BSRIA. It is only intended to be used within the context described in the text.

This report has been prepared by BSRIA Limited, with reasonable skill, care and diligence in accordance with BSRIA's Quality Assurance and within the scope of our Terms and Conditions of Business.

This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at its own risk.

CONTENTS

1	INTRO	DDUCTION	.5
	1.1	Test item information	.5
2	TEST	METHOD	.7
	2.1 2.2 2.3	Water penetration Pressure drop Test equipment used	.7 .7 .7
3	RESU	LTS	.8
	3.2	Rainwater Penetration Coefficient of Entry Coefficient of Discharge	.9

APPENDICES

APPENDIX: A	MANUFACTURER'S DRAWING	.11

FIGURES

Figure 1	Test item 60554A2 (front)	.6
	Test item 60554A2 (rear).	
	Close-up of guard	

1 INTRODUCTION

This report concerns tests conducted on a louvre to determine the Pressure Drop versus Airflow Curve, with the associated Coefficient of Entry and Discharge using the test methods contained within EN 13030:2001. The work was commissioned by nv RENSON Sunprotection-Projects sa, and was carried out at BSRIA North, Preston on 10 - 13 October 2017.

Items received for test

Test Item	BSRIA ID	
421/L.050.00	60554A2	

1.1 TEST ITEM INFORMATION

Contract	60554
Date	9-10-17
Manufacturer	nv RENSON Sunprotection-Projects sa
Louvre Model	421/L.050.00
Material	Aluminium
Painted	No
Core Area Height	970 mm
Core Area Width	980 mm
Blade Pack Depth	41 mm
Frame Depth	50 mm
No. of Blades	19
Blade Pitch	50 mm
Blade Angle	45º approx.
No. of Banks	1
Guard Type	Insect
Guard Spacing	10 mm
Side Channels	No
Water Drip Tray	Yes
Blade Orientation	Horizontal

Note: Weather louvre core area - product of the minimum height H and minimum width W of the front opening in the weather louvre assembly with the louvre blades removed Blade Pack Depth refers to the distance from front of first bank to rear of last bank.

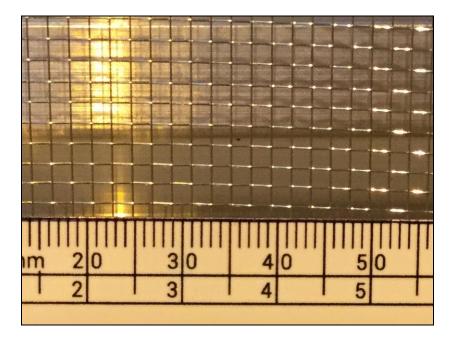

Figure 1 Test item 60554A2 (front)

Figure 2 Test item 60554A2 (rear)

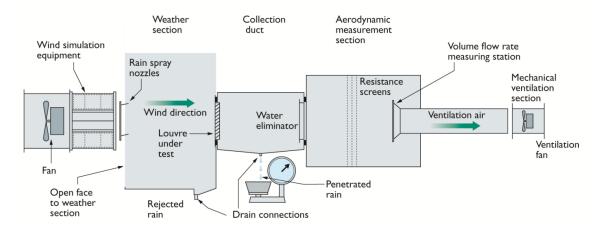


Figure 3 Close-up of guard

2 TEST METHOD

A schematic representation of the rig used during testing

2.1 WATER PENETRATION

The weather louvre is subjected to fan driven wind at a speed of 13 m/s and water sprayed as rainfall at a rate of 75 l/h. In addition to the simulated wind and rain, air is drawn through the louvre at various set velocities (0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5 m/s).

Each test is preceded by a suitable 'pre-test' soak which is typically around 30 minutes. Each test is run until the results become stable, and in any case, for a minimum of 30 minutes.

The penetrated water is collected in the collection duct and is measured and recorded against time elapsed.

A range of measurements are taken to give the characteristic curve for the test louvre.

2.2 PRESSURE DROP

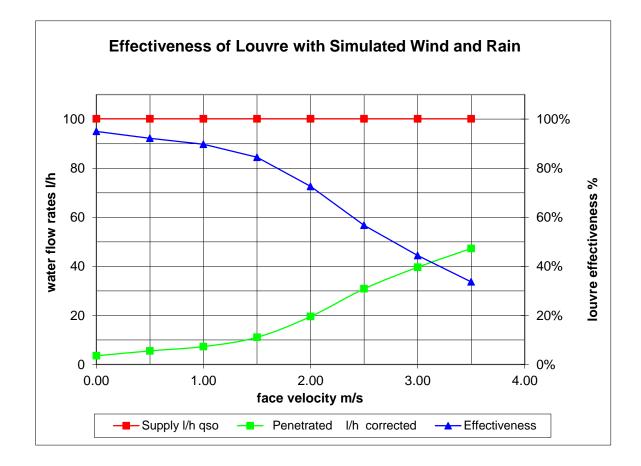
For this test, the Aerodynamic Measuring Section (AMS) is separated from the main rig. The louvre is then mounted in the upstream opening of the AMS.

Pressure tappings in the plenum walls of the AMS allow measurement of the static pressure within the plenum during testing. The airflow volume is calculated from the differential pressure at the measuring cones. The plenum has a set of settling screens within to produce even flow through the cones and therefore gives an accurate reading of the total volume.

By adjusting the fan speed, the total airflow through the system varies and therefore changes the pressure on the louvre under test. A range of measurements are taken to give the characteristic curve for the test louvre.

Test equipment	BSRIA ID	Calibration Expiry Date
Water supply measurement	352	24-4-18
Rain measuring system	353	24-4-18
Airflow cones	364	7-1-19
Micromanometer	1600	24-6-18
Micromanometer	1601	24-6-18
Scales (water)	1599	20-6-18
Flow meter	1533	9-6-18

2.3 TEST EQUIPMENT USED


3 RESULTS

3.1 RAINWATER PENETRATION

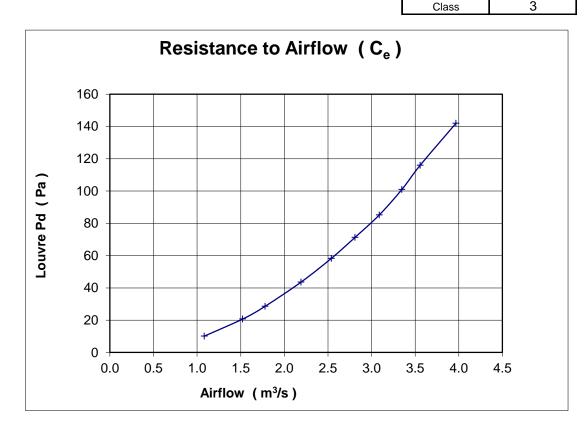
MANUFACTURER nv RENSON Sunprotection-Projects sa Date 10/10/2017 MODEL 421/L.050.00 Contract 60554

	ated rainfall Vind speed	75 13.0	mm/hr m/s	louvre height louvre width louvre area	980	mm
VENTILATION RATE			WATER FLOW RATES			

VENTILAT		WATER FLOW RATES			
Volume	Velocity	Supply	Penetrated	Effectiveness	Class
m³/s	m/s	l/h	l/h		
0.00	0.00	100.2	3.6	95.0%	В
0.48	0.50	100.2	5.5	92.2%	С
0.95	1.00	100.2	7.3	89.8%	С
1.43	1.50	100.2	11.1	84.5%	С
1.90	2.00	100.2	19.6	72.6%	D
2.38	2.50	100.2	30.9	56.7%	D
2.85	3.00	100.2	39.6	44.4%	D
3.33	3.50	100.2	47.3	33.7%	D
0.00	0.00	100.2	47.0	00.170	D

Τ

٦

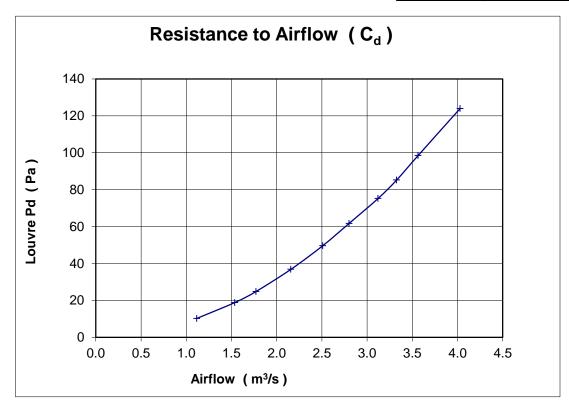

3.2 COEFFICIENT OF ENTRY

MANUFACTURER MODEL nv RENSON Sunprotection-Projects sa 421/L.050.00

Date 13/10/2017 Contract 60554

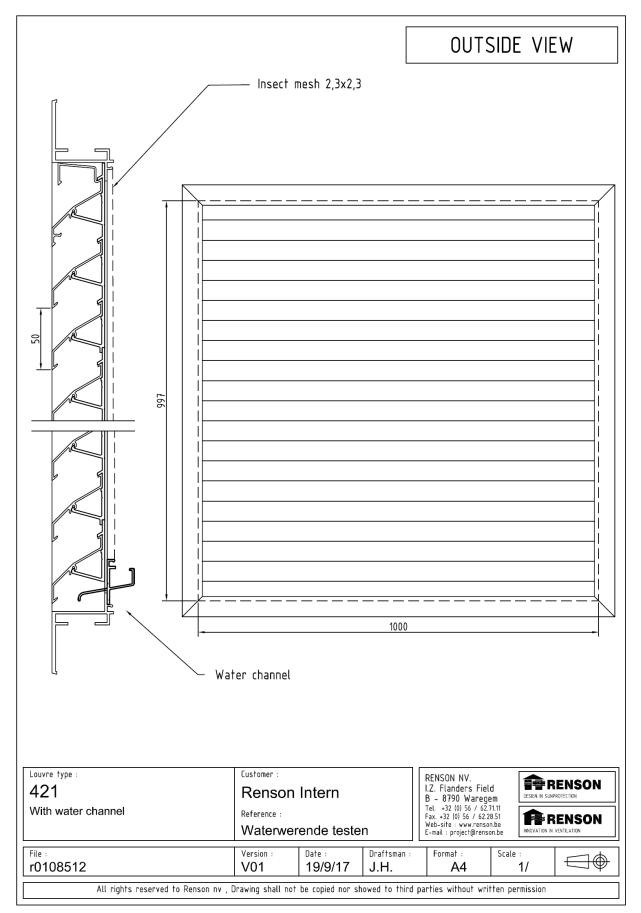
air temperature	15.9 °C	louvre height	970 mm
barometer 1	008 mbar	louvre width	980 mm
air density 1	.210 kg/m ³	louvre area	0.951 m ²

	louvre face velocity	air flow rate	9	
louvre pd		test	theoretical	coefficient
Pascals	m/s	m³/s	m³/s	C _e
10.1	1.14	1.082	3.883	0.279
20.7	1.60	1.522	5.559	0.274
28.6	1.87	1.779	6.535	0.272
43.6	2.31	2.192	8.068	0.272
58.3	2.67	2.539	9.330	0.272
71.3	2.96	2.811	10.318	0.272
85.2	3.25	3.089	11.278	0.274
101.0	3.52	3.348	12.280	0.273
116.0	3.74	3.558	13.160	0.270
142.0	4.17	3.968	14.560	0.273
			mean C _e	0.273
			Class	3



A 'trendline' for the above graph would follow $y = 8.773x^{2.027}$

3.3 COEFFICIENT OF DISCHARGE


		nv RENSON Sunprotection 421/L.050.00	SON Sunprotection-Projects sa 50.00		13/10/2017 60554
		16.2°Clouvre height1008mbarlouvre width1.209kg/m³louvre area		970 mm 980 mm 0.951 m ²	
		louvre face velocity	air flow rate		
	louvre pd		test	theoretical	coefficient
	Pascals	m/s	m³/s	m³/s	C _d
	10.2 18.8	1.17 1.62	1.117 1.536	3.904 5.301	0.286 0.290

Pascals	m/s	m°/s	m°/s	C _d
10.2	1.17	1.117	3.904	0.286
18.8	1.62	1.536	5.301	0.290
24.8	1.86	1.771	6.088	0.291
36.8	2.27	2.157	7.416	0.291
49.6	2.64	2.509	8.610	0.291
61.7	2.95	2.801	9.603	0.292
75.2	3.28	3.121	10.601	0.294
85.2	3.50	3.327	11.284	0.295
98.5	3.75	3.565	12.133	0.294
124.0	4.24	4.030	13.613	0.296
			mean C_d	0.292
			Class	3

A 'trendline' for the above graph would follow $y = 8.1794x^{1.9534}$

APPENDIX: A MANUFACTURER'S DRAWING

