

Weather Louvre Test

L.050IM2

Carried out for nv Renson Ventilation sa

Report 61220/4

Compiled by Paul Ainscoe

5 December 2018

www.bsria.co.uk

This page is intentionally left blank

Page 2 of 11 Report 61220/4 © BSRIA

Weather Louvre Test

L.050IM2

Carried out for:	nv Renson Ventilation sa Maalbeekstraat 10 8790 - Waregem Belgium
Contract:	Report 61220/4
Issued by:	BSRIA Limited Old Bracknell Lane West Bracknell Berkshire RG12 7AH UK
Telephone:	+44 (0)1344 465600
Fax:	+44 (0)1344 465626

Email: bsria@bsria.co.uk Website: www.bsria.co.uk

QUALITY ASSURANCE

Issue	Date	Compiled by:	Approved by:	Signature
Draft	05-Dec-2018	Paul Ainscoe	Mark Roper	M.M. Ku
		Test Engineer	Principal Test Engineer	

DISCLAIMER

This Document must not be reproduced except in full without the written approval of an executive director of BSRIA. It is only intended to be used within the context described in the text.

This Document has been prepared by BSRIA Limited, with reasonable skill, care and diligence in accordance with BSRIA's Quality Assurance and within the scope of our Terms and Conditions of Business.

This Document is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the Document at its own risk.

CONTENTS

1	INTRO	DDUCTION	.5
	1.1	Test item information	.5
2	TEST	METHOD	.7
	2.1	Water penetration	.7
	2.2	Pressure drop	.7
		Test equiptment used	
3	RESU	LTS	.8
	3.1	Rainwater Penetration	.8
	3.2	Coefficent of Entry	.9
		Coefficent of Discharge1	

FIGURES

Figure 1	Test item 61220A4 (front)	6
Figure 2	Test item 61220A4 (rear)	6

APPENDICES

APPENDIX A: MANUFACTURERS DRAWING11	APPENDIX A:	MANUFACTURERS DRAWING
-------------------------------------	-------------	-----------------------

1 INTRODUCTION

This report concerns tests conducted on a louvre to determine the Rainwater Penetration and the Pressure Drop versus Airflow Curves, with the associated Coefficients of Discharge and Entry, using the test methods contained within EN 13030:2001. It should be noted that BS EN 13030:2001 simply provides a method for testing and rating louvre samples, there are no minimum permitted values or recommendations for louvre performance.

The work was commissioned by nv Renson Ventilation sa and was carried out at BSRIA North on 22 to 24 August 2018.

Items received for test

Test Item	BSRIA ID
L.050IM2	61220A4

1.1 TEST ITEM INFORMATION

	61220		
	20-8-18		
	nv Renson Ventilation sa		
	L.050IM2		
	Aluminium		
	No		
	975 mm		
	995 mm		
	41 mm		
	50 mm		
	19		
	50 mm		
	45° approx.		
	1		
	None		
	N/A		
	No		
	No		
	Horizontal		

Note: Weather louvre core area - product of the minimum height H and minimum width W of the front opening in the weather louvre assembly with the louvre blades removed Blade Pack Depth refers to the distance from front of first bank to rear of last bank.

Figure 1 Test item 61220A4 (front)

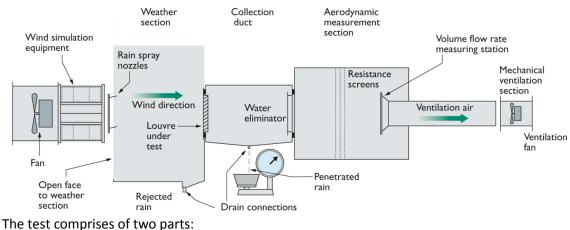


Figure 2 Test item 61220A4 (rear)

Page 6 of 11 Report 61220/4 © BSRIA

2 TEST METHOD

A schematic representation of the rig used during testing

. .

2.1 WATER PENETRATION

The weather louvre is subjected to fan driven wind at a speed of 13 m/s and water sprayed as rainfall at a rate of 75 l/h. In addition to the simulated wind and rain, air is drawn through the louvre at various set velocities (0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5 m/s).

Each test is preceded by a suitable 'pre-test' soak which is typically around 30 minutes. Each test is run until the results become stable, and in any case, for a minimum of 30 minutes.

The penetrated water is collected in the collection duct and is measured and recorded against time elapsed.

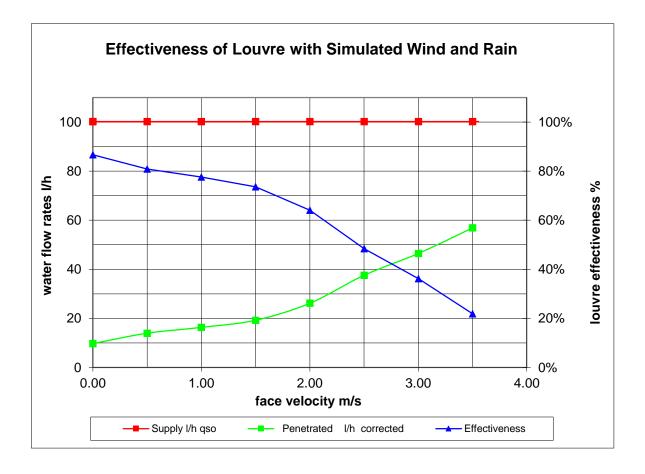
A range of measurements are taken to give the characteristic curve for the test louvre.

2.2 PRESSURE DROP

For this test, the Aerodynamic Measuring Section (AMS) is separated from the main rig. The louvre is then mounted in the upstream opening of the AMS.

Pressure tappings in the plenum walls of the AMS allow measurement of the static pressure within the plenum during testing. The airflow volume is calculated from the differential pressure at the measuring cones. The plenum has a set of settling screens within to produce even flow through the cones and therefore gives an accurate reading of the total volume.

By adjusting the fan speed, the total airflow through the system varies and therefore changes the pressure on the louvre under test. A range of measurements are taken to give the characteristic curve for the test louvre.


Test equipment	BSRIA ID	Calibration Expiry Date
Water supply measurement	352	19-4-19
Rain measuring system	353	20-4-19
Airflow cones	364	17-1-19
Micromanometer	1600	21-12-18
Micromanometer	1601	21-12-18
Scales (water)	1599	26-6-19
Flow meter	1688	29-5-19

2.3 TEST EQUIPTMENT USED

3 RESULTS

3.1 RAINWATER PENETRATION

MANUFAC	TURER MODEL	nv Renson V L.050IM2	entilatior	i sa	С	Date ontract	22/08/2018 61220	
	ated rainfall Vind speed	-	mm/hr m/s		louvre height louvre width louvre area	975 995 0.970	mm	
	VENTILA	TION RATE	,	WATER FLC	OW RATES			
	Volume m ³ /s	Velocity m/s		Supply I/h	Penetrated I/h		Effectiveness	Class
								_
	0.00	0.00		100.2	9.7		86.6%	С
	0.49	0.50		100.2	13.9		80.8%	С
	0.97	1.00		100.2	16.3		77.6%	D
	1.45	1.50		100.2	19.2		73.6%	D
	1.94	2.00		100.2	26.2		64.0%	D
	2.43	2.50		100.2	37.5		48.4%	D
	2.91	3.00		100.2	46.4		36.2%	D
	3.40	3.50		100.2	56.8		21.9%	D

Page 8 of 11 Report 61220/4 © BSRIA

Date 24/08/2018

3.2 COEFFICENT OF ENTRY

MANUFACTURER MODEL

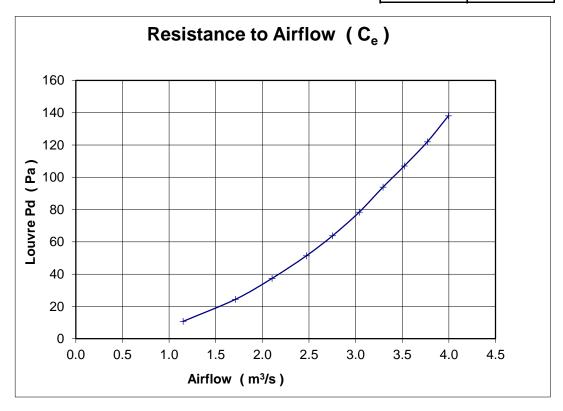
air temperature 17.3 °C barometer 1006 mbar air density 1.201 kg/m³

L.050IM2

nv Renson Ventilation sa

Contract 61220 975 mm

995 mm


 0.970 m^2

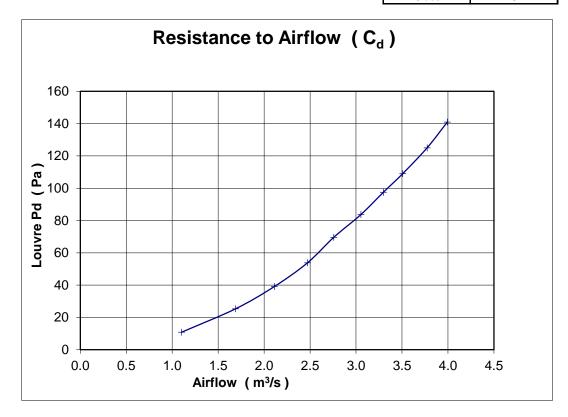
	louvre face velocity	air flow r	ate	
louvre pd		test	theoretical	coefficient
Pascals	m/s	m³/s	m³/s	C _e
10.8	1.19	1.151	4.114	0.280
24.4	1.76	1.711	6.183	0.277
37.4	2.17	2.105	7.655	0.275
51.4	2.55	2.473	8.975	0.276
63.8	2.84	2.753	9.999	0.275
78.4	3.13	3.039	11.084	0.274
93.9	3.40	3.295	12.130	0.272
107.0	3.63	3.523	12.949	0.272
122.0	3.89	3.771	13.827	0.273
138.0	4.12	3.996	14.705	0.272
			mean C _e	0.274
			Class	3

louvre height

louvre width

louvre area

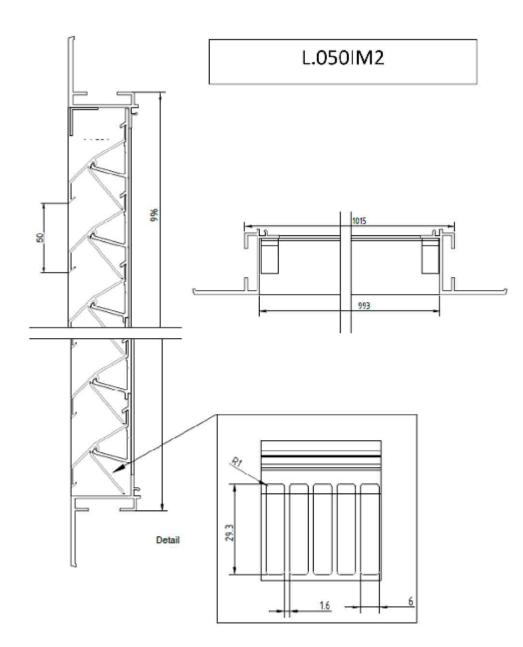
A 'trendline' for the above graph would follow $y = 8.111x^{2.0453}$


Page 9 of 11 Report 61220/4 © BSRIA

3.3 COEFFICENT OF DISCHARGE

MANUFACTURER MODEL

nv Renson Ventilation sa L.050IM2 Date 24/08/2018 Contract 61220


air temperature 17.1 °C barometer 1006 mbar air density 1.202 kg/m ³		louvre height louvre width louvre area	995	mm
	louvre face velocity	air flow ra	ate	
louvre pd Pascals	m/s	test m³/s	theoretical m ³ /s	coefficient C _d
10.8 25.3 39.1 53.8 69.6 83.7 97.5 109.0 125.0 141.0	1.14 1.74 2.18 2.55 2.84 3.15 3.40 3.62 3.89 4.12	1.101 1.689 2.111 2.472 2.758 3.054 3.298 3.508 3.774 3.994	4.112 6.294 7.825 9.179 10.440 11.449 12.356 13.065 13.991 14.859	0.268 0.268 0.270 0.269 0.264 0.267 0.267 0.269 0.270 0.269
L			mean C_d	0.268
			Class	3

A 'trendline' for the above graph would follow $y = 8.8899x^2$

Page 10 of 11 Report 61220/4 © BSRIA

APPENDIX A: MANUFACTURERS DRAWING

