
## TESTRAPPORT 61220/2

**ENGLISH TRANSLATION** 

According to EN 13030: 2001: "Ventilation of buildings - Grilles - Performance testing of air grilles subjected to simulated rain"

#### L.075HF-457 (mesh 2.3x2.3, with water channel)

| carried out by :  | BSRIA Ltd<br>Old Bracknell West, Bracknell<br>Berkshire RG12 7AH (Engeland)       |
|-------------------|-----------------------------------------------------------------------------------|
| commissioned by : | nv RENSON Sunprotection-Projects sa<br>Maalbeekstraat 10<br>8790 Waregem (België) |
| Date of issue :   | 5 December 2018                                                                   |



Close-up of guard

| TEST II | NFORM | ATION |
|---------|-------|-------|
|---------|-------|-------|

| Contract          | 61220                                          |
|-------------------|------------------------------------------------|
| Date              | 20-8-18                                        |
| Manufacturer      | nv Renson Ventilation sa                       |
| Louvre Model      | L.075HF-457 (mesh 2.3x2.3, with water channel) |
| Material          | Aluminium                                      |
| Painted           | No                                             |
| Blade Height      | 995 mm                                         |
| Blade Width       | 1000 mm                                        |
| Blade Depth       | 52 mm                                          |
| Frame Depth       | 65 mm                                          |
| No. of Blades     | 13                                             |
| Blade Pitch       | 75 mm                                          |
| Blade Angle       | 45° approx.                                    |
| No. of Banks      | 1                                              |
| Guard Type        | Insect                                         |
| Guard Spacing     | 10 mm                                          |
| Side Channels     | No                                             |
| Water Drip Tray   | Yes                                            |
| Blade Orientation | Horizontal                                     |

Note: Weather louvre core area - product of the minimum height H and minimum width W of the front opening in the weather louvre assembly with the louvre blades removed.



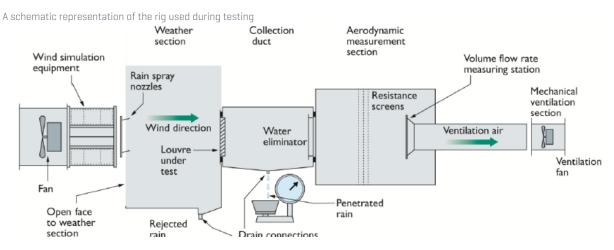
60554A3 (front)



59126A7 (back)



#### INTRODUCTION


This report concerns tests conducted on a louvre to determine the Rainwater Penetration and the Pressure Drop versus Airflow Curves, with the associated Coefficients of Discharge and Entry, using the test methods contained within EN 13030:2001. It should be noted that BS EN 13030:2001 simply provides a method for testing and rating louvre samples, there are no minimum permitted values or recommendations for louvre performance.

The work was commissioned by nv Renson Ventilation sa and was carried out at BSRIA North on 20 to 21 August 2018.

Items received for test

| Test Item   | BSRIA ID |
|-------------|----------|
| 481/L.050HF | 60554A3  |

#### **TEST METHOD**





The test comprises of two parts:

#### WATER PENETRATION

The weather louvre is subjected to fan driven wind at a speed of 13 m/s and water sprayed as rainfall at a rate of 75 l/h. In addition to the simulated wind and rain, air is drawn through the louvre at various set velocities [0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5 m/s].

Each test is preceded by a suitable 'pre-test' soak which is typically around 30 minutes. Each test is run until the results become stable, and in any case, for a minimum of 30 minutes.

The penetrated water is collected in the collection duct and is measured and recorded against time elapsed.

A range of measurements are taken to give the characteristic curve for the test louvre.

#### PRESSURE DROP

For this test, the Aerodynamic Measuring Section (AMS) is separated from the main rig. The louvre is then mounted in the upstream opening of the AMS.

Pressure tappings in the plenum walls of the AMS allow measurement of the static pressure within the plenum during testing. The airflow volume is calculated from the differential pressure at the measuring cones. The plenum has a set of settling screens within to produce even flow through the cones and therefore give accurate reading of the total volume.

By adjusting the fan speed, the total airflow through the system varies and therefore changes the pressure on the louvre under test. A range of measurements are taken to give the characteristic curve for the test louvre.

#### • TEST EQUIPMENT USED

| Test equipment           | BSRIA ID | Calibration Expiry Date |
|--------------------------|----------|-------------------------|
| Water supply measurement | 352      | 19-4-19                 |
| Rain measuring system    | 353      | 20-4-19                 |
| Airflow cones            | 364      | 17-1-19                 |
| Micromanometer           | 1600     | 21-12-18                |
| Micromanometer           | 1601     | 21-12-18                |
| Scales (water)           | 1599     | 26-6-19                 |
| Flow meter               | 1688     | 29-5-19                 |



#### WEATHER LOUVRE TEST

| Uitgevoerd in opdracht van | nv RENSON Sunprotection-Projects sa<br>Industriezone 2<br>Vijverdam<br>Maalbeekstraat 10<br>8790 Waregem<br>België |
|----------------------------|--------------------------------------------------------------------------------------------------------------------|
| Contract :                 | Report 61220/2                                                                                                     |
| Datum :                    | 05-Dec-2018                                                                                                        |
| Door :                     | BSRIA Ltd<br>Old Bracknell Lane West,<br>Bracknell,<br>Berkshire RG12 7AH UK                                       |
| Tel:<br>Fax:<br>E:<br>W:   | +44 (0)1344 465600<br>+44 (0)1344 465626<br>bsria@bsria.co.uk<br>www.bsria.co.uk                                   |

| Compiled by:                 | Approved by:                |
|------------------------------|-----------------------------|
| Naam : Andrew Freeth         | Naam : Mark Roper           |
| Titel : Senior Testingenieur | Titel : Hoofd Testingenieur |
|                              | _                           |

#### DISCLAIMER

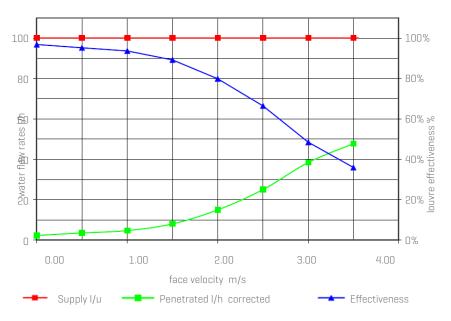
This report must not be reproduced except in full without the written approval of an executive director of BSRIA. It is only intended to be used within the context described in the text.

This report has been prepared by BSRIA Limited, with reasonable skill, care and diligence in accordance with BSRIA's Quality Assurance and within the scope of our Terms and Conditions of Business.

This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at its own risk.



#### **RAINWATER PENETRATION**


| MANUFACTURER       | nv Renson Ventilation sa           |
|--------------------|------------------------------------|
| MODEL              | L.075HF-457                        |
|                    | (mesh 2.3x2.3, with water channel) |
| Simulated rainfall | 75 mm/br                           |

Simulated rainfall Wind speed 75 mm/hr 13.0 m/s Date 21/08/2018 Contract 61220

| louvre height | 995 mm   |
|---------------|----------|
| louvre width  | 1000 mm  |
| louvre area   | 0,995 m2 |

| VENTILATION RATE |                 | WATER FLOW R  | WATER FLOW RATES |        | Class |
|------------------|-----------------|---------------|------------------|--------|-------|
| Volume<br>m3/s   | Velocity<br>m/s | Supply<br>I/u | Penetrated I/u   |        |       |
| 0,00             | 0,00            | 100,2         | 2,3              | 96,9 % | В     |
| 0,50             | 0,50            | 100,2         | 3,5              | 95,2 % | В     |
| 1,00             | 1,00            | 100,2         | 4,7              | 93,7 % | C     |
| 1,49             | 1,50            | 100,2         | 8,0              | 89,2 % | С     |
| 1,99             | 2,00            | 100,2         | 15,0             | 79,9 % | D     |
| 2,49             | 2,50            | 100,2         | 25,0             | 66,5 % | D     |
| 2,99             | 3,00            | 100,2         | 38,5             | 48,5 % | D     |
| 3,48             | 3,50            | 100,2         | 47,8             | 36,0 % | D     |

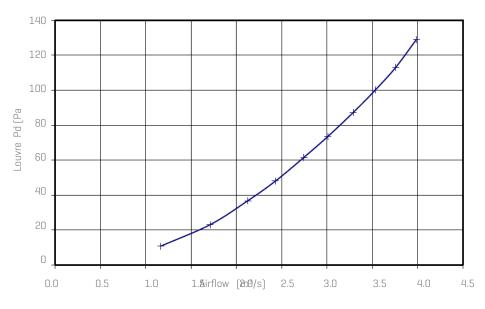
#### Effectiveness of Louvre with Simulated Wind and Rain





#### **COEFFICIENT OF ENTRY**

| MANUFACTURER | nv Renson Ventilation sa           |
|--------------|------------------------------------|
| MODEL        | L.075HF-457                        |
|              | [mesh 2.3x2.3, with water channel] |


air temperature barometer air density

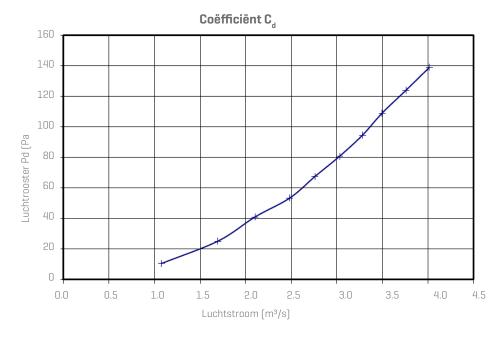
19 °C 1013 1.203 Date 20/08/2018 Contract 61220

| C       | louvre height | 995 mm   |
|---------|---------------|----------|
| 3 mbar  | louvre width  | 1000 mm  |
| 3 kg/m3 | louvre area   | 0.995 m2 |

|                     | louvre face velocity | air flow rate |                     |                   |
|---------------------|----------------------|---------------|---------------------|-------------------|
| louvre pd<br>Pascal | m/s                  | Test<br>m³/s  | theoretical<br>m³/s | Coëfficiënt<br>Ce |
| 10,7                | 1,17                 | 1,163         | 4,196               | 0,277             |
| 23,0                | 1,72                 | 1,709         | 6,152               | 0,278             |
| 36,7                | 2,14                 | 2,125         | 7,771               | 0,273             |
| 48,0                | 2,44                 | 2,432         | 8,887               | 0,274             |
| 61,5                | 2,76                 | 2,745         | 10,059              | 0,273             |
| 73,5                | 3,03                 | 3,010         | 10,997              | 0,274             |
| 87,3                | 3,31                 | 3,292         | 11,985              | 0,275             |
| 100,0               | 3,55                 | 3,533         | 12,827              | 0,275             |
| 113,0               | 3,78                 | 3,759         | 13,635              | 0,276             |
| 129,0               | 4,01                 | 3,988         | 14,569              | 0,274             |
|                     |                      |               | Ce moyen            | 0,275             |
|                     |                      |               | Classe              | 3                 |

# Resistance to Airflow ( $C_{e}$ )

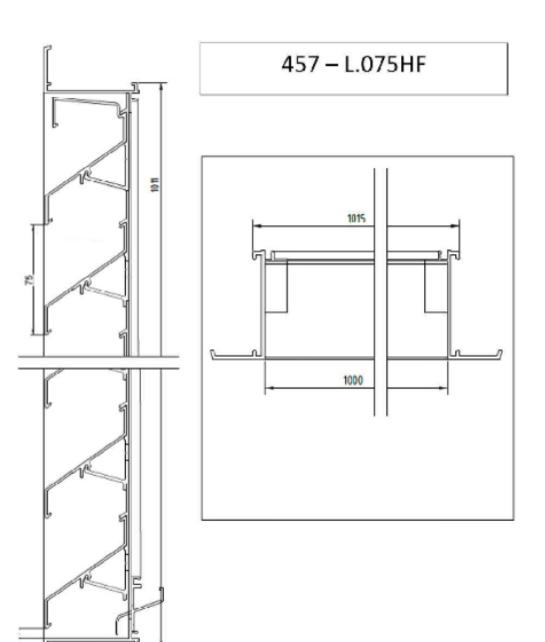



A 'trendline' for the above graph would follow y = 6.8074x1.9559



#### **COEFFICIENT OF DISCHARGE**

| MANUFACTURER    | nv Renson Ventilation sa           | Date       | 20/08/20 | 18       |
|-----------------|------------------------------------|------------|----------|----------|
| MODEL           | L.075HF-457                        | Contract   | 61220    |          |
|                 | (mesh 2.3x2.3, with water channel) |            |          |          |
| air temperature | 19.2 °C                            | louvre hei | ght      | 995 mm   |
| barometer       | 1014 mbar                          | louvre wid | lth      | 1000 mm  |
| air density     | 1.203 kg/m3                        | louvre are | а        | 0.995 m2 |
|                 |                                    |            |          |          |


|                     | louvre face velocity | air flow rate |                     |                   |
|---------------------|----------------------|---------------|---------------------|-------------------|
| louvre pd<br>Pascal | m/s                  | Test<br>m³/s  | theoretical<br>m³/s | Coëfficiënt<br>Ce |
| 10,5                | 1,08                 | 1,076         | 4,157               | 0,259             |
| 25,2                | 1,71                 | 1,697         | 6,441               | 0,263             |
| 41,0                | 2,11                 | 2,103         | 8,215               | 0,256             |
| 53,4                | 2,50                 | 2,484         | 9,376               | 0,265             |
| 67,6                | 2,78                 | 2,763         | 10,549              | 0,262             |
| 80,8                | 3,05                 | 3,032         | 11,533              | 0,263             |
| 94,6                | 3,30                 | 3,283         | 12,479              | 0,263             |
| 109,0               | 3,52                 | 3,498         | 13,395              | 0,261             |
| 124,0               | 3,78                 | 3,760         | 14,287              | 0,263             |
| 139,0               | 4,04                 | 4,017         | 15,126              | 0,266             |
|                     |                      |               | Cd moyen            | 0,262             |
|                     |                      |               | Classe              | 3                 |



A 'trendline' for the above graph would follow y =  $7.0049 \times 1.9711$ 



# APPENDIX: A MANUFACTURER'S DRAWING





# **Weather Louvre Test**

# L.075HF-457 (mesh 2.3x2.3, with water channel)

Carried out for nv Renson Ventilation sa

Report 61220/2

Compiled by Paul Ainscoe

5 December 2018



# Weather Louvre Test

# L.075HF-457 (mesh 2.3x2.3, with water channel)

| Carried out for: | nv Renson Ventilation sa<br>Maalbeekstraat 10<br>8790 - Waregem<br>Belgium           |
|------------------|--------------------------------------------------------------------------------------|
| Contract:        | Report 61220/2                                                                       |
| Issued by:       | BSRIA Limited<br>Old Bracknell Lane West<br>Bracknell<br>Berkshire<br>RG12 7AH<br>UK |
| Telephone:       | +44 (0)1344 465600                                                                   |

Fax: +44 (0)1344 465626

Email: bsria@bsria.co.uk Website: www.bsria.co.uk

# QUALITY ASSURANCE

| Issue | Date        | Compiled by:  | Approved by:               | Signature |
|-------|-------------|---------------|----------------------------|-----------|
| Draft | 05-Dec-2018 | Paul Ainscoe  | Mark Roper                 | M.H.K.    |
|       |             | Test Engineer | Principal Test<br>Engineer |           |

#### DISCLAIMER

This Document must not be reproduced except in full without the written approval of an executive director of BSRIA. It is only intended to be used within the context described in the text.

This Document has been prepared by BSRIA Limited, with reasonable skill, care and diligence in accordance with BSRIA's Quality Assurance and within the scope of our Terms and Conditions of Business.

This Document is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the Document at its own risk.

# **CONTENTS**

| 1 | INTRO | DUCTION                  | 5 |
|---|-------|--------------------------|---|
|   | 1.1   | Test item information    | 5 |
| 2 | TEST  | METHOD                   | 7 |
|   | 2.1   | Water penetration        | 7 |
|   | 2.2   | Pressure drop            | 7 |
|   |       | Test equipment used      |   |
| 3 | RESU  | .TS                      | 8 |
|   | 3.1   | Rainwater Penetration    | 8 |
|   |       | Coefficient of Entry     |   |
|   |       | Coefficient of Discharge |   |

# **FIGURES**

| Figure 1 | Test item 61220A2 (front) | 6 |
|----------|---------------------------|---|
| Figure 2 | Test item 61220A2 (rear)  | 6 |
| Figure 3 | Close-up of guard         | 6 |

# **APPENDICES**

| APPENDIX A: | MANUFACTURERS DRAWING 11 |
|-------------|--------------------------|
|             |                          |

Page 4 of 11 Report 61220/2 © BSRIA

# **1 INTRODUCTION**

This report concerns tests conducted on a louvre to determine the Rainwater Penetration and the Pressure Drop versus Airflow Curves, with the associated Coefficients of Discharge and Entry, using the test methods contained within EN 13030:2001. It should be noted that BS EN 13030:2001 simply provides a method for testing and rating louvre samples, there are no minimum permitted values or recommendations for louvre performance.

The work was commissioned by nv Renson Ventilation sa and was carried out at BSRIA North on 20 to 21 August 2018.

#### Items received for test

| Test Item                                      | BSRIA ID |
|------------------------------------------------|----------|
| L.075HF-457 (mesh 2.3x2.3, with water channel) | 61220A2  |

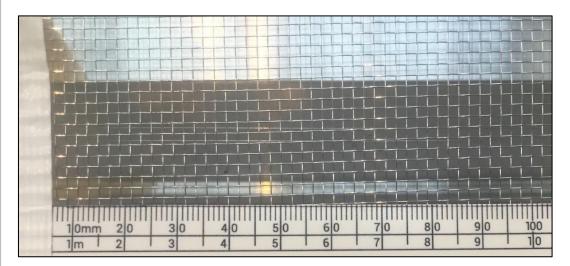
# **1.1 TEST ITEM INFORMATION**

| Contract          | 61220                                          |
|-------------------|------------------------------------------------|
| Date              | 20-8-18                                        |
| Manufacturer      | nv Renson Ventilation sa                       |
| Louvre Model      | L.075HF-457 (mesh 2.3x2.3, with water channel) |
| Material          | Aluminium                                      |
| Painted           | No                                             |
| Core Area Height  | 995 mm                                         |
| Core Area Width   | 1000 mm                                        |
| Blade Pack Depth  | 52 mm                                          |
| Frame Depth       | 65 mm                                          |
| No. of Blades     | 13                                             |
| Blade Pitch       | 75 mm                                          |
| Blade Angle       | 45° approx.                                    |
| No. of Banks      | 1                                              |
| Guard Type        | Insect                                         |
| Guard Spacing     | 10 mm                                          |
| Side Channels     | No                                             |
| Water Drip Tray   | Yes                                            |
| Blade Orientation | Horizontal                                     |
|                   |                                                |

Note: Weather louvre core area - product of the minimum height H and minimum width W of the front opening in the weather louvre assembly with the louvre blades removed.



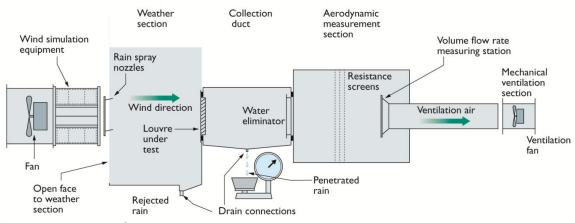
Blade Pack Depth refers to the distance from front of first bank to rear of last bank.


## Figure 1 Test item 61220A2 (front)



### Figure 2 Test item 61220A2 (rear)




## Figure 3 Close-up of guard



Page 6 of 11 Report 61220/2 © BSRIA

# 2 TEST METHOD

A schematic representation of the rig used during testing:



The test comprises of two parts:

# 2.1 WATER PENETRATION

The weather louvre is subjected to fan driven wind at a speed of 13 m/s and water sprayed as rainfall at a rate of 75 l/h. In addition to the simulated wind and rain, air is drawn through the louvre at various set velocities (0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5 m/s).

Each test is preceded by a suitable 'pre-test' soak which is typically around 30 minutes. Each test is run until the results become stable, and in any case, for a minimum of 30 minutes.

The penetrated water is collected in the collection duct and is measured and recorded against time elapsed.

A range of measurements are taken to give the characteristic curve for the test louvre

# 2.2 PRESSURE DROP

For this test, the Aerodynamic Measuring Section (AMS) is separated from the main rig. The louvre is then mounted in the upstream opening of the AMS.

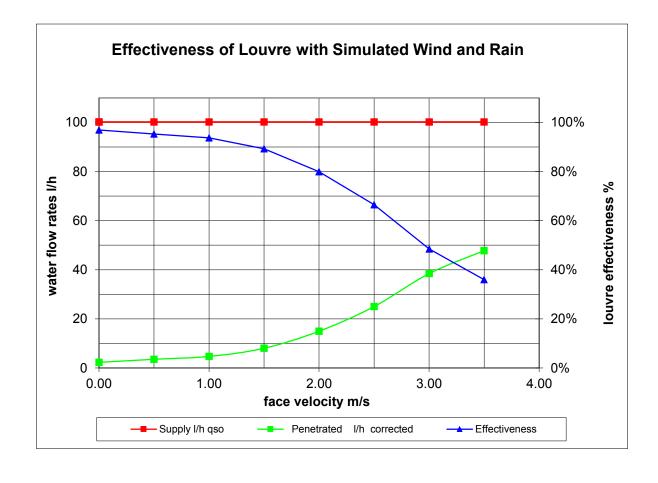
Pressure tappings in the plenum walls of the AMS allow measurement of the static pressure within the plenum during testing. The airflow volume is calculated from the differential pressure at the measuring cones. The plenum has a set of settling screens within to produce even flow through the cones and therefore gives an accurate reading of the total volume.

By adjusting the fan speed, the total airflow through the system varies and therefore changes the pressure on the louvre under test. A range of measurements are taken to give the characteristic curve for the test louvre.

| Test equipment           | BSRIA ID | Calibration Expiry Date |
|--------------------------|----------|-------------------------|
| Water supply measurement | 352      | 19-4-19                 |
| Rain measuring system    | 353      | 20-4-19                 |
| Airflow cones            | 364      | 17-1-19                 |
| Micromanometer           | 1600     | 21-12-18                |
| Micromanometer           | 1601     | 21-12-18                |
| Scales (water)           | 1599     | 26-6-19                 |
| Flow meter               | 1688     | 29-5-19                 |

# 2.3 TEST EQUIPMENT USED




# **3 RESULTS**

# 3.1 RAINWATER PENETRATION

MANUFACTURER MODEL

nv Renson Ventilation sa L.075HF-457 (mesh 2.3x2.3, with water channel) Date 21/08/2018 Contract 61220

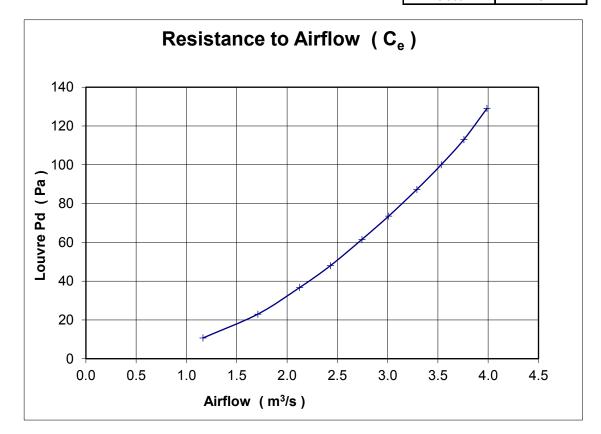
| <br>ated rainfall<br>Vind speed | 75<br>13.0 | mm/hr<br>m/s | louvre height<br>louvre width<br>louvre area | 995<br>1000<br>0.995 | mm            |       |
|---------------------------------|------------|--------------|----------------------------------------------|----------------------|---------------|-------|
| VENTILAT                        | ION RATE   | WATER F      | LOW RATES                                    |                      |               |       |
| Volume                          | Velocity   | Supply       | Penetrated                                   |                      | Effectiveness | Class |
| m³/s                            | m/s        | l/h          | l/h                                          |                      |               |       |
|                                 |            |              |                                              |                      |               |       |
| 0.00                            | 0.00       | 100.2        | 2.3                                          |                      | 96.9%         | В     |
| 0.50                            | 0.50       | 100.2        | 3.5                                          |                      | 95.2%         | В     |
| 1.00                            | 1.00       | 100.2        | 4.7                                          |                      | 93.7%         | С     |
| 1.49                            | 1.50       | 100.2        | 8.0                                          |                      | 89.2%         | С     |
| 1.99                            | 2.00       | 100.2        | 15.0                                         |                      | 79.9%         | D     |
| 2.49                            | 2.50       | 100.2        | 25.0                                         |                      | 66.5%         | D     |
| 2.99                            | 3.00       | 100.2        | 38.5                                         |                      | 48.5%         | D     |
| 3.48                            | 3.50       | 100.2        | 47.8                                         |                      | 36.0%         | D     |
|                                 |            |              |                                              |                      |               |       |



Page 8 of 11 Report 61220/2

# 3.2 COEFFICIENT OF ENTRY

#### MANUFACTURER MODEL


nv Renson Ventilation sa L.075HF-457

(mesh 2.3x2.3, with water channel)

Date 20/08/2018 Contract 61220

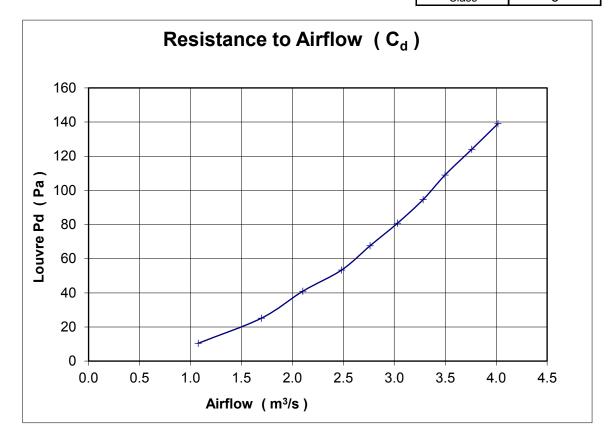
| air temperature | 19    | °C                | louvre height | 995 mm              |
|-----------------|-------|-------------------|---------------|---------------------|
| barometer       | 1013  | mbar              | louvre width  | 1000 mm             |
| air density     | 1.203 | kg/m <sup>3</sup> | louvre area   | $0.995 \text{ m}^2$ |

|           | louvre face velocity | air flow r | ate                 |                |
|-----------|----------------------|------------|---------------------|----------------|
| louvre pd |                      | test       | theoretical         | coefficient    |
| Pascals   | m/s                  | m³/s       | m³/s                | C <sub>e</sub> |
|           |                      |            |                     |                |
| 10.7      | 1.17                 | 1.163      | 4.196               | 0.277          |
| 23.0      | 1.72                 | 1.709      | 6.152               | 0.278          |
| 36.7      | 2.14                 | 2.125      | 7.771               | 0.273          |
| 48.0      | 2.44                 | 2.432      | 8.887               | 0.274          |
| 61.5      | 2.76                 | 2.745      | 10.059              | 0.273          |
| 73.5      | 3.03                 | 3.010      | 10.997              | 0.274          |
| 87.3      | 3.31                 | 3.292      | 11.985              | 0.275          |
| 100.0     | 3.55                 | 3.533      | 12.827              | 0.275          |
| 113.0     | 3.78                 | 3.759      | 13.635              | 0.276          |
| 129.0     | 4.01                 | 3.988      | 14.569              | 0.274          |
|           |                      |            |                     |                |
|           |                      |            | mean C <sub>e</sub> | 0.275          |
|           |                      |            | Class               | 3              |



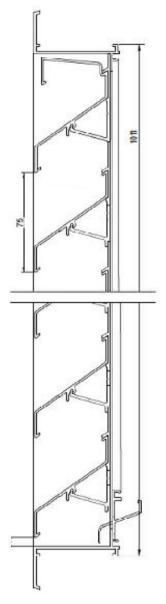
A 'trendline' for the above graph would follow y = 7.916x2.0171

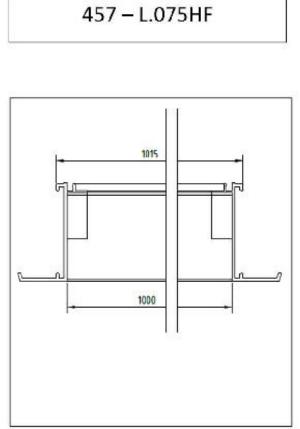
# 3.3 COEFFICIENT OF DISCHARGE


# MANUFACTURER

```
MODEL
```

nv Renson Ventilation sa L.075HF-457 (mesh 2.3x2.3, with water channel) Date 20/08/2018 Contract 61220


| air temperature 19.2 °C             | louvre height | 995 mm              |
|-------------------------------------|---------------|---------------------|
| barometer 1014 mbar                 | louvre width  | 1000 mm             |
| air density 1.203 kg/m <sup>3</sup> | louvre area   | $0.995 \text{ m}^2$ |


|           | louvre face velocity | air flow rat | e                   |                |
|-----------|----------------------|--------------|---------------------|----------------|
| louvre pd |                      | test         | theoretical         | coefficient    |
| Pascals   | m/s                  | m³/s         | m³/s                | C <sub>d</sub> |
|           |                      |              |                     |                |
| 10.5      | 1.08                 | 1.076        | 4.157               | 0.259          |
| 25.2      | 1.71                 | 1.697        | 6.441               | 0.263          |
| 41.0      | 2.11                 | 2.103        | 8.215               | 0.256          |
| 53.4      | 2.50                 | 2.484        | 9.376               | 0.265          |
| 67.6      | 2.78                 | 2.763        | 10.549              | 0.262          |
| 80.8      | 3.05                 | 3.032        | 11.533              | 0.263          |
| 94.6      | 3.30                 | 3.283        | 12.479              | 0.263          |
| 109.0     | 3.52                 | 3.498        | 13.395              | 0.261          |
| 124.0     | 3.78                 | 3.760        | 14.287              | 0.263          |
| 139.0     | 4.04                 | 4.017        | 15.126              | 0.266          |
|           |                      |              |                     |                |
|           |                      |              | mean C <sub>d</sub> | 0.262          |
|           |                      |              | Class               | 3              |



A 'trendline' for the above graph would follow  $y = 9.076x^{1.9729}$ 

# APPENDIX A: MANUFACTURERS DRAWING





Page 11 of 11 Report 61220/2