

Vertikaler Sonnenschutz

Icarus® | Sunclips®

Inleitung > RENSON® Unternehmensprofil

Sechs gute Gründe, um ein Partner von RENSON® zu werden

- Kundenzufriedenheit durch persönliche Kontakte, professionelle Beratung, ausgezeichneten Service und zuverlässige, leistungsfähige Produkte ist das Hauptziel unserer Firma.
- 2. RENSON® ist eine renommierte und etablierte multinationale Firma mit internationalen Kenntnissen und Erfahrungen, dank der Bemühungen unserer Spezialisten vor Ort. Sie sind in allen Regionen der Welt anwesend. RENSON® hat einen Beitrag zu Objekten auf der ganzen Welt geleistet, von Moskau bis Tahiti und von Monaco bis Shanghai.
- 3. Komplettservice von Anfang bis Ende, adäquate Unterstützung und Beratung während der Entwurfsphase, Planung und Montage.
- 4. Dank der vollständigen vertikalen Integration unseres Produktionsprozesses können wir die strengsten Fabrikationsanforderungen erfüllen. Die Investitionen in unsere Spritzguss- und Eloxalabteilung sowie in eine vollautomatische Pulverbeschichtungsanlage garantieren unsere Effizienz und Akkuratesse.
- 5. Durch unsere fortlaufenden Forschungs- und Entwicklungsanstrengungen werden Kundenerfordernisse in einzigartige Lösungen und innovative Produkte umgesetzt.
- 6. RENSON® ist auf alle Aspekte von Lüftung und Sonnenschutz spezialisiert, um das aktuelle Ziel des "Healthy Building Concept gesundes Wohnen und Arbeiten" zu erreichen.

Inleitung

Icarus®, Centre de loisirs, Liffre (FR) arch.: Cabinet Colhen, Liffre

Sunclips° Evo 96, Porte Océane II, Auray (FR)

Notwendigkeit eines Sonnenschutzes

Ein Gebäude oder eine Wohnung mit großen Glasflächen in Südrichtung bietet viele Vorteile. Im Herbst, Winter und Frühjahr genießen Sie die einfallenden Sonnenstrahlen. Aber im Sommer kann das Wohlbefinden durch Überhitzung und störende Lichtreflexe beeinträchtigt werden.

Sonnenschutzsysteme und Screens wirken der Überhitzung entgegen. Sie schirmen die Sonnenstrahlen ab, bevor diese mit den Glasflächen in Kontakt kommen. Unerwünschte Wärme und störender Lichteinfall gelangen nicht herein. Blendeffekte und unangenehme Reflexionen auf Fernseh- und Computerbildschirmen sind somit ausgeschlossen. Dennoch verlieren Sie den Blickkontakt mit der Umgebung nicht – die wichtige Aussicht nach draußen bleibt erhalten.

Das KYOTO-Protokoll

Viele Länder haben inzwischen das Kyoto-Protokoll unterzeichnet. Aus einem wachsenden Umweltbewusstsein heraus erkennen viele Menschen den verhängnisvollen, aber noch nicht unwiderruflichen Charakter des menschlichen Einflusses auf unseren Planeten und insbesondere das Klima. Daher wollen sie sich engagieren und Maßnahmen ergreifen. Wenn wir den Treibhauseffekt verringern wollen, muss der Energieverbrauch sinken.

Ein wichtiger Energiefresser ist die Kühlung von Gebäuden. Ein wirksamer Sonnenschutz kann diese Aufgabe teilweise und zuweilen sogar vollständig übernehmen. In diesem Fall ist eine zusätzliche Kühlung überflüssig, und Sie sparen Energie.

Verschiedene Regierungen haben daher im Zusammenhang mit Energieverbrauch und Lüftung bereits Maßnahmen ergriffen.

- Belgien: Regelgeving van Energieprestatie & Binnenklimaat (EPB)
- · Niederlande: Energie Prestatie Coëfficiënt (EPC)
- · Frankreich: Réglement Thermique 2012 (RT2012)
- · Deutschland: Energieeinsparverordnung
- · Großbritannien:
- Approved Document L2 'Conservation of fuel and power in buildings other than dwellings'
- Approved document L1 'Conservation of fuel and power in dwellings'

Dimensionierung des Sonnenschutzes

Die Sonne ist eine wichtige primäre Quelle für Wärme- und Lichtenergie. Design, Größenbemessung und Steuerung von Sonnenschutzvorrichtungen gestalten sich manchmal äußerst komplex und schwierig. Der Sonnenschutz muss so konzipiert werden, dass er die direkte Sonneneinstrahlung im Sommer verringert, doch im Winter ist die zusätzliche Sonnenwärme willkommen. Auch eine optimale Steuerung des natürlichen Sonnenlichteinfalls ist von großer Bedeutung. Es muss ausreichend Licht einfallen, aber unangenehme Reflexionen oder Blendgefahr müssen vermieden werden.

Dafür gelten einige Grundprinzipien bezüglich der erforderlichen Daten zur Dimensionierung des Sonnenschutzes.

Der Stand der Sonne variiert von Stunde zu Stunde und von Tag zu Tag. Die unterschiedlichen Sonnenstände lassen sich in einem Diagramm

visuell veranschaulichen. Diese Sonnenkurven hängen jedoch von der Position auf dem Globus ab, die sich über Längen- und Breitengrade bestimmen lässt. Die Kurven basieren stets auf der Solarzeit (höchster Sonnenstand um 12 Uhr mittags) und müssen an die jeweilige lokale Zeitzone und u. U. auch an die Winter- oder Sommerzeit angepasst werden. Unter Berücksichtigung der o. g. Parameter und der Ausrichtung der Fassade lassen sich die genauen Beschattungswinkel für die richtige Größe und Bemessung des Sonnenschutzes berechnen.

RENSON® Sunprotection-Projects verfügt über die nötige Software, um Ihnen hierbei mit professioneller Beratung zur Seite zu stehen.

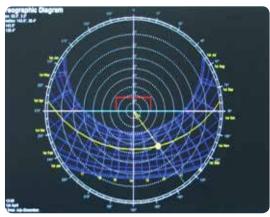
Entwicklung

Sonnenstand

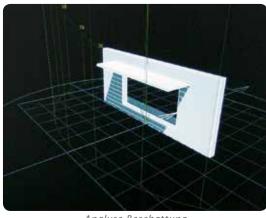
Mit modernsten Entwicklungsmethoden, beispielsweise CFD-Simulationen, und in Zusammenarbeit mit namhaften Forschungsinstituten wie WTB, Von-Karman Institut, CSTB usw. werden Neuentwicklungen konzipiert.

Alle Produkte werden eingehend auf Stabilität und Langlebigkeit getestet.

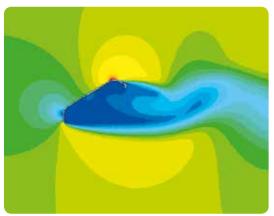
Stabilität und Dimensionierung

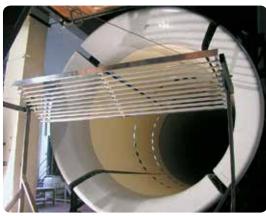

Gemäß den geltenden Bauvorschriften (Eurocodes) lässt sich für ein Projekt eine detaillierte Wind- und Schneelast-Stabilitätsberechnung durchführen. Anhand dieser Belastungswerte werden die korrekten Spannweiten, das Design der Trägerprofile und die Befestigungsmethode ermittelt.

Objektlösungen


Dieses Dokument gibt nur einen kurzen Überblick über unsere Standardlösungen und optionen. Dank unserer jahrelangen Erfahrung können wir praktisch jede Form oder gewünschte Konstruktion realisieren.

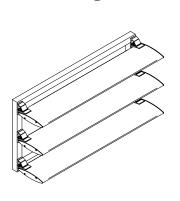
Unser Projektteam steht jederzeit zu Ihrer Verfügung, um die richtige Lösung für Ihr Objekt zu finden.

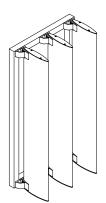

RENSON® Sunprotection-Projects bietet eine Vielzahl von Möglichkeiten für einen ästhetisch ansprechenden und architektonisch geeigneten Sonnenschutz gemäß den unterschiedlichen Vorschriften.


Stereografisches Diagramm

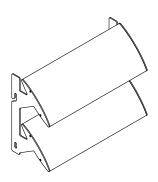
Analyse Beschattung

CFD-Simulation

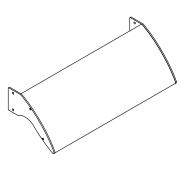



Windtunneltest

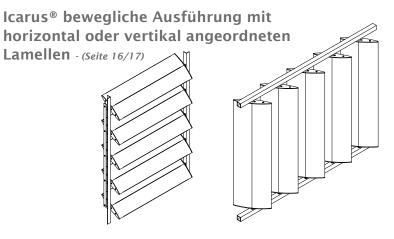
Montagearten Icarus® < Systeme



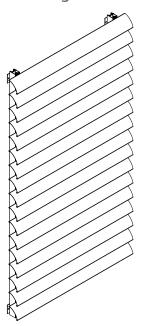
Icarus® Quickfix® mit horizontal oder vertikal angeordneten Lamellen - (Seite 10/11)

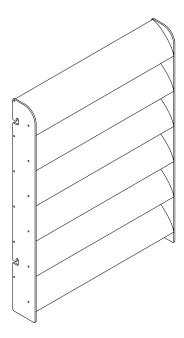


Icarus® Kassetten, mehrere starre Lamellen - (Seite 12/13)

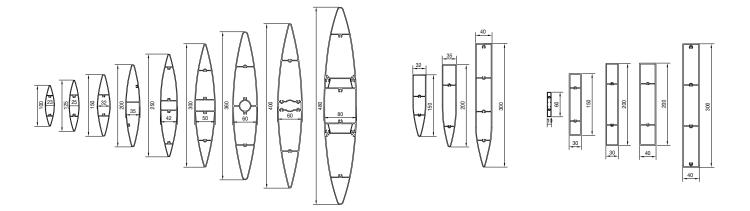


Icarus® starre Ausführung, Einzelne Lamellen - (Seite 14/15)




Systeme > Montagearten Sunclips®

Sunclips® vertikal angeordnete Lamellen auf Trägern - (Seite 18/19)



Sunclips® vertikal angeordnete Lamellen als Kassettensystem - (Seite 20/21)

Icarus® Lamellen < Systeme

Beschreibung

Icarus® Lamellen bestehen aus stranggepressten Aluminiumprofilen, die als Sonnenschutz, Fassadenverkleidung oder Sichtschutz verwendet werden können.

- Icarus® Aero sind ellipsenförmige Lamellen mit einer Breite von 100 bis 480 mm.
- Icarus® Plaero ist eine Kombination von rechteckigen und ellipsenförmige Lamellen mit Breiten 150, 200 und 300 mm.
- Icarus® Plano sind rechteckige Lamellen mit einer Breite von 60, 150, 200 und 300 mm.

Je nach Objektanforderungen können in Absprache mit unserer Projektabteilung andere Formen oder Abmessungen konzipiert werden.

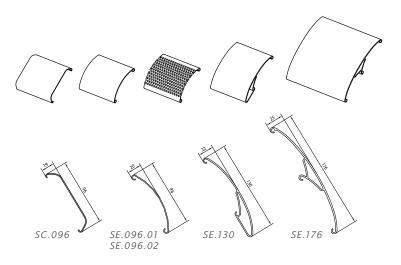
Material

Aluminium-Strangpressprofil, Legierung EN AW-6063 T66

Oberflächenbehandlung

- E6/EV1 eloxiert (20 Mikron)
- Polyester-Pulverbeschichtung (60 80 Mikron) in RAL-Farben

Technische Date	en					
Icarus® Aero	Breite (mm)	Höhe (mm)	l _y (mm⁴)	W _y (mm³)	l _z (mm⁴)	W _z (mm³)
ICA.100	100	23	256337	5126	16992	1482
ICA.125	125	25	484640	7754	29399	2352
ICA.150	150	32	950301	12616	64713	3936
ICA.200	200	35	2395293	23905	113538	6387
ICA.250	250	42	5155315	41231	214720	10264
ICA.300	300	50	9699889	64666	402436	16097
ICA.360	360	60	17180788	95447	756541	25217
ICA.400	400	60	23853116	119266	874358	29079
ICA.480	480	80	46149163	192285	2321828	58045
Icarus® Plaero	Breite (mm)	Höhe (mm)	l _y (mm⁴)	W _y (mm³)	l _₂ (mm⁴)	W _z (mm³)
ICL.150	150	32	1201029	14735	96620	5426
ICL.200	200	35	3318686	30087	176148	9937
ICL.300	300	40	11843210	73712	400594	19031
ICARUS® Plano	Breite (mm)	Höhe (mm)	l _y (mm⁴)	W _y (mm³)	l _₂ (mm⁴)	W _z (mm³)
ICP.060	60	10	70800	2333	3131	626
ICP.150	150	30	2270694	30273	153477	10232
ICP.200/30	200	30	4028998	40285	171972	11271
ICP.200/40 (*)	200	40	5417853	54177	382888	19143
ICP.300	300	40	1402200	93480	462605	22384


v: stärkere Achse · z: schwächere Achse

. (*) = Objektprofile werden objektbezogen stranggepresst und sind nicht vorrätig.

 $C_{f_{V}}$ = Koeffizient für die Bestimmung der horizontalen Belastung (Sog-Effekt) einer Lamelle bei einer Lamellen-Neigung von 45 $^{\circ}$

Cr. = Koeffizient für die Bestimmung der vertikalen Belastung (Steig-Effekt) einer Lamelle bei einer Lamellen-Neigung von 45°

Systeme > Sunclips® Lamellen

Sunclips® besteht aus stranggepressten C-förmigen Lamellen aus Aluminium, die an einer starren Konstruktion befestigt werden. Das Sunclips® System wird vertikal vor der Fassade angebracht, um den gewünschten Beschattungseffekt zu erreichen. Der Typ Sunclips® Classic SC.096 ist ideal für eine schlichte Ausführung. Sunclips® EVO entspricht einer eher aerodynamischen Ausführung. Sunclips® EVO gibt es in 3 Abmessungen: SE.096, SE.130 und SE.176 mit Lamellenbreiten von 96, 130 bzw. 176 mm.

Material

Aluminium-Strangpressprofil, Legierung EN AW-6063 T66

Oberflächenbehandlung

- E6/EV1 eloxiert (20 Mikron)
- Polyester-Pulverbeschichtung (60 80 Mikron) in RAL-Farben

Eigenschaften

Der Lamellentyp Sunclips $^{\circ}$ SE.096.02 ist perforiert mit einem freien Bereich von 30 %.

Befestigung/Lamellenhalter

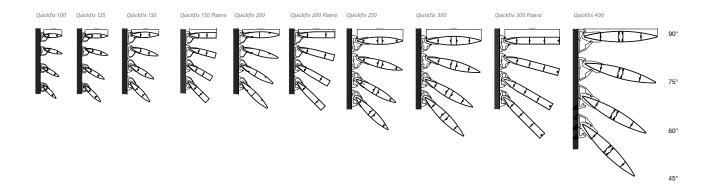
- Aluminiumclips
- verschraubt zwischen seitlichen Flachprofilen

Neigungswinkel der Lamellen

Bei vertikaler Anwendung und Befestigung in den Standard-Lamellenhaltern beträgt der Neigungswinkel der Lamellen 45°. Für Anwendungen als Kassettensystem, bei dem die Lamellen zwischen seitlichen Flachprofilen verschraubt werden, sind andere Neigungswinkel möglich.

Lamellenabstand

Der Standardabstand bei den Lamellen SC.096, SE.096.01 und SE.096.02 beträgt 100 mm. Bei Lamellentyp SE.130 beträgt der Standardabstand 133,3 mm, bei Lamellentyp SE.176 beträgt der Standardabstand 176 mm. Je nach Anwendung und Lamellentyp sind andere Abstände möglich.


Technische Daten					
Sunclips®	Breite (mm)	Höhe (mm)	l _y (mm⁴)	W _z (mm ⁴)	l _z (mm³)
SC.096	96	19	160082	5080	353
SE.096.01 / SE.096.02	96	20	160842	6048	3348
SE.130	130	22	556097	19124	7610
SE.176	176	25	1250307	24909	14097

 C_{fr} = Koeffizient für die Bestimmung der horizontalen Belastung (Sog-Effekt) einer Lamelle bei einer Lamellen-Neigung von 45° C_{fx} = Koeffizient für die Bestimmung der vertikalen Belastung (Steig-Effekt) einer Lamelle bei einer Lamellen-Neigung von 45° C_{fx}

Montageart Icarus® Quickfix® < Systeme

Systeme > Montageart Icarus® Quickfix®

Beschreibung

Icarus® Quickfix® ist ein einzigartiges, patentiertes strukturelles Sonnenschutzsystem, einfach und diskret montierbar mittels Klipsmontage. Die Quickfix-Halter bestehen aus einem Klips, der auf der Unterkonstruktion befestigt wird und einem Gabelprofil, dass mittels Edelstahl-Blindklinknägel auf der Lamellen festmontiert wird. Dank diesem 2-teiligen Konzept ist eine geschmeidige thermische Dilatation der Lamelle möglich, wodurch keine Spannungen auf die Fassade übertragen werden. Zudem ist die kontinuierliche lineare Ansicht der Lamellen einfach zurealisieren.

Anwendung

Die Lamellen können in horizontaler Linie liegend oder aufrecht stehend vor der Fassade montiert werden.

Materialien und Aufbau

Lamelle: Aluminium-Strangpressprofil, Legierung EN AW-6063 T66 Endkappen aus Aluminium AlMg3.

Blechschrauben und Befestigungsmittel bestehen aus Edelstahl.

Oberflächenbehandlung

- E6/EV1 eloxiert (20 Mikron)
- Polyester-Pulverbeschichtung (60 80 Mikron) in RAL-Farben

Lamellentyp

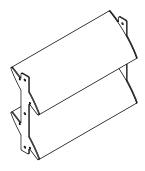
Die folgenden Lamellentypen und Standardneigungswinkel sind möglich: ICA.100, 125, 150, 200, 250, 300, 400, ICL.150, 200 und 300 : 45° oder 90° ICA.100, 125, 150, 200, 250, 300, 400, ICL.150, 200 und 300 : 60° oder 75°

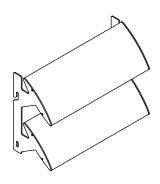
Einzelheiten zu den Quickfix® Haltern und Endkappen finden Sie auf den Seiten 22/23 und 28/29.

Maximale Spannweiten

Empfohlene Maximallänge der Lamellen bei einem Neigungswinkel von 90°.

Lamellentyp	Windbelastung						
	650 Pa	800 Pa	1250 Pa				
ICA.100	2000 mm	1860 mm	1590 mm				
ICA.125	2150 mm	2000 mm	1706 mm				
ICA.150	2775 mm	2580 mm	2200 mm				
ICA.200	2820 mm	2620 mm	2240 mm				
ICA.250	3320 mm	3085 mm	2635 mm				
ICA.300	3735 mm	3735 mm	3415 mm				
ICA.400	3235 mm	3235 mm	2865 mm				
ICL.150	2860 mm	2660 mm	2270 mm				
ICL.200	3210 mm	2980 mm	2545 mm				
ICL.300	3700 mm	3455 mm	2950 mm				


Die hier beschriebenen maximalen Spannweiten gelten nur für die Lamellen und sind von den Abmessungen des Sonnenschutzes abhängig. Nach einer genauen Beurteilung der Projektsituation sind gegebenenfalls auch andere Spannweiten möglich.



Systeme > Montageart Icarus® Kassetten

Beschreibung

Vertikaler, starrer Sonnenschutz mit mehreren Lamellen, die als Kassetten zwischen seitlichen Flachprofilen angeordnet werden. Abstand und Neigung der Lamellen sind frei wählbar. Zudem kann auch zwischen verschiedenen Ausführungen der seitlichen Flachprofilen gewählt werden.

Befestigung der Kassetten direkt auf einer strukturellen Unterkonstruktion mithilfe von Bügeln oder Befestigung mit Schwert-Konsolen.

Materialien und Aufbau

Lamellen: Aluminium-Strangpressprofil, Legierung EN AW-6063 T66 Die seitlichen Flachprofilen werden aus Aluminium (AlMg3) oder Stahl gefertigt, Materialstärke ist gemäß den Abmessungen, dem Gewicht und der lokalen Windbelastung berechnet.

Blechschrauben und Befestigungsmittel bestehen aus Edelstahl.

Oberflächenbehandlung

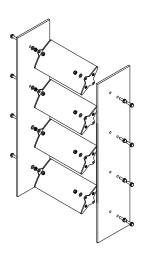
- E6/EV1 eloxiert (20 Mikron)
- Polyester-Pulverbeschichtung (60 80 Mikron) in RAL-Farben
- Stahlteile sind galvanisiert und pulverbeschichtet

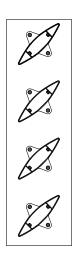
Maximale Spannweiten

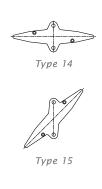
Empfohlene Maximallänge der Lamellen bei einem Neigungswinkel von 45°.

Lamellentyp		Windbelastung	
	650 Pa	800 Pa	1250 Pa
ICA.100	2280 mm	2105 mm	1785 mm
ICA.125	2470 mm	2290 mm	1965 mm
ICA.150	3145 mm	2890 mm	2440 mm
ICA.200	3590 mm	3285 mm	2755 mm
ICA.250	4110 mm	3745 mm	3125 mm
ICA.300	4615 mm	4515 mm	3730 mm
ICA.360	5280 mm	5250 mm	4340 mm
ICA.400	5325 mm	5325 mm	4475 mm
ICA.480	6000 mm	6000 mm	5880 mm
ICL.150	3420 mm	3150 mm	2675 mm
ICL.200	3750 mm	3450 mm	2900 mm
ICL.300	4615 mm	4515 mm	3730 mm
ICP.060	1435 mm	1335 mm	1150 mm
ICP.150	3700 mm	3415 mm	2910 mm
ICP.200/30	3910 mm	3615 mm	3050 mm
ICP.200/40 (*)	4735 mm	4675 mm	3935 mm
ICP.300	4755 mm	4440 mm	3725 mm
Dia hiar basebriahan	an maximalan Snannwait	an aaltan nur für dia Lar	mallan und sind van

Die hier beschriebenen maximalen Spannweiten gelten nur für die Lamellen und sind von den Abmessungen des Sonnenschutzes abhängig. Nach einer genauen Beurteilung der Projektsituation sind gegebenenfalls auch andere Spannweiten möglich.






Montageart Icarus® starre Ausführung < Systeme

Systeme > Montageart Icarus® starre Ausführung

Beschreibung

Senkrechter, starrer Sonnenschutz mit einzelnen Lamellen, wobei die Endkappen mit Laschen direkt an der strukturellen Unterkonstruktion befestigt werden. Um Wärmedehnungen zu ermöglichen, wird eine Seite fest und die gegenüberliegende Seite lose montiert.

Materialien und Aufbau

Lamellen: Aluminium-Strangpressprofil, Legierung EN AW-6063 T66 Die Endkappen werden aus Aluminium (AlMg3) gefertigt, Materialstärke ist gemäß den Abmessungen, dem Gewicht und der lokalen Windbelastung berechnet.

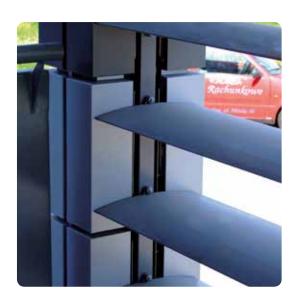
Blechschrauben und Befestigungsmittel bestehen aus Edelstahl.

Oberflächenbehandlung

- E6/EV1 eloxiert (20 Mikron)
- Polyester-Pulverbeschichtung (60 80 Mikron) in RAL-Farben
- Stahlteile sind galvanisiert und pulverbeschichtet

Lamellentyp

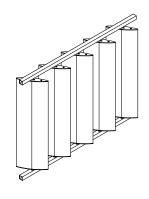
Alle Icarus® Lamellentypen verwendbar.

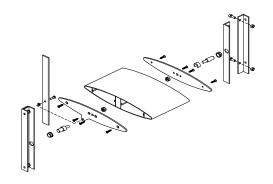

Maximale Spannweiten

Empfohlene Maximallänge der Lamellen bei einem Neigungswinkel von 45°.

Lamellentyp		Windbelastung	
	650 Pa	800 Pa	1250 Pa
ICA.100	2280 mm	2105 mm	1785 mm
ICA.125	2470 mm	2290 mm	1965 mm
ICA.150	3145 mm	2890 mm	2440 mm
ICA.200	3590 mm	3285 mm	2755 mm
ICA.250	4110 mm	3745 mm	3125 mm
ICA.300	4615 mm	4515 mm	3730 mm
ICA.360	5280 mm	5250 mm	4340 mm
ICA.400	5325 mm	5325 mm	4475 mm
ICA.480	6000 mm	6000 mm	5880 mm
ICL.150	3420 mm	3150 mm	2675 mm
ICL.200	3750 mm	3450 mm	2900 mm
ICL.300	4615 mm	4515 mm	3730 mm
ICP.060	1435 mm	1335 mm	1150 mm
ICP.150	3700 mm	3415 mm	2910 mm
ICP.200/30	3910 mm	3615 mm	3050 mm
ICP.200/40 (*)	4735 mm	4675 mm	3935 mm
ICP.300	4755 mm	4440 mm	3725 mm

Die hier beschriebenen maximalen Spannweiten gelten nur für die Lamellen und sind von den Abmessungen des Sonnenschutzes abhängig. Nach einer genauen Beurteilung der Projektsituation sind gegebenenfalls auch andere Spannweiten möglich.




Montageart Icarus® bewegliche Ausführung < Systeme

Systeme > Montageart Icarus® bewegliche Ausführung

Beschreibung

Vertikaler, starrer Sonnenschutz mit beweglichen Lamellen. Die Lamellen sind standardmäßig um 90° drehbar. Andere Bewegungswinkel sind in Absprache möglich.

Materialien und Aufbau

Lamellen: Aluminium-Strangpressprofil, Legierung EN AW-6063 T66. Endkappen aus Aluminium AlMg3.

Die Unterkonstruktion ist Abhängig von den Abmessungen, dem Gewicht der Lamellen und der Wind- und Schneebelastung aus Aluminium oder Stahl gefertigt.

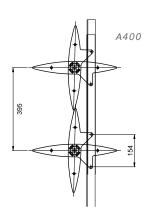
Die Edelstahl-Drehachsen werden zentrisch auf die Aluminium-Endkappen montiert. Lager und Sicherungsringe bestehen aus UVbeständigem Kunststoff. Blechschrauben und andere Befestigungsmittel bestehen aus Edelstahl.

Oberflächenbehandlung

- E6/EV1 eloxiert (20 Mikron)
- Polyester-Pulverbeschichtung (60 80 Mikron) in RAL-Farben
- Stahlteile sind galvanisiert und pulverbeschichtet

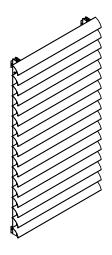
Lamellentyp

Alle Icarus® Lamellentypen verwendbar.


Maximale Spannweiten

Empfohlene Maximallänge der Lamellen:

Lamellentyp		Windbelastung	
	650 Pa	800 Pa	1250 Pa
ICA.100	2000 mm	1860 mm	1590 mm
ICA.125	2145 mm	1990 mm	1700 mm
ICA.150	2775 mm	2580 mm	2200 mm
ICA.200	2820 mm	2615 mm	2240 mm
ICA.250	3325 mm	3085 mm	2630 mm
ICA.300	3735 mm	3735 mm	3415 mm
ICA.360	4280 mm	4280 mm	3870 mm
ICA.400	4315 mm	4315 mm	3820 mm
ICA.480	5170 mm	5170 mm	4975 mm
ICL.150	2950 mm	2825 mm	2410 mm
ICL.200	2985 mm	2765 mm	2365 mm
ICL.300	3735 mm	3735 mm	3415 mm
ICP.150	3130 mm	3075 mm	2620 mm
ICP.200/30	3150 mm	2920 mm	2495 mm
ICP.200/40 (*)	3835 mm	3775 mm	3220 mm
ICP.300	3850 mm	3620 mm	3150 mm
Die bier beschrieben	an maximalan Channwait	an galtan nur für die Lar	mallan und sind von


Die hier beschriebenen maximalen Spannweiten gelten nur für die Lamellen und sind von den Abmessungen des Sonnenschutzes abhängig. Nach einer genauen Beurteilung der Projektsituation sind gegebenenfalls auch andere Spannweiten möglich.

Systeme > Montageart Sunclips® auf Trägern

Beschreibung

Vertikal montierter, starrer Sicht- oder Sonnenschutz. Perfekt als Sonnenschutz für Fassaden in Ost- oder Westrichtung geeignet.

Material

Aluminium-Strangpressprofil, Legierung EN AW-6063 T66

Oberflächenbehandlung

- E6/EV1 eloxiert (20 Mikron)
- Polyester-Pulverbeschichtung (60 80 Mikron) in RAL-Farben

Lamellentyp

Mit allen Sunclips® Lamellentypen ausführbar

Lamellenhalter

Lamellen werden in Aluminium-Lamellenhalter eingeklipst.

Neigungswinkel der Lamellen

Die Lamellen haben eine Standardneigung von 45°

Lamellenabstand

Standardmäßig haben die Lamellen einen Abstand von 100 mm. Bei den Lamellentypen SE.130 und SE.176 wird ein Abstand von 133 mm beziehungsweise 176 mm empfohlen.

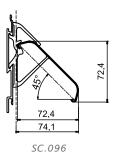
Trägerprofile

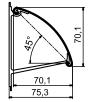
Für Sunclips® Classic SC.096 können die Trägerprofile SD.014, SD.054 und SD.100 verwendet werden.

Bei Sunclips® Evo sind alle SD- und LD-Träger-Typen möglich.

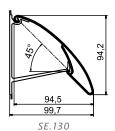
Detaillierte Informationen, siehe S. 26/27.

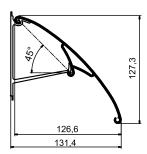
Optional: Klappelemente


In den vertikalen Sonnenschutz können vormontierte Klappelemente eingebaut werden, z. B. für die Reinigung von Fenstern.

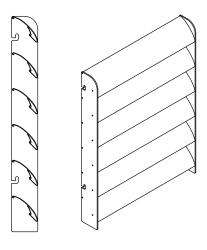

Maximale Spannweiten

Empfohlene Maximallänge der Lamellen:


Lamellentyp	Windbelastung						
	650 Pa	800 Pa	1250 Pa				
SC.096	800 mm	750 mm	600 mm				
SE.096	1350 mm	1220 mm	1000 mm				
SE.130	2000 mm	1800 mm	1440 mm				
SE.176	2000 mm	1800 mm	1440 mm				



SE.096.01 / SE.096.02



SE.176

Systeme > Montageart Sunclips® Kassetten

Vertikaler, starrer Sonnenschutz mit mehreren Lamellen, die als Kassetten zwischen seitlichen Flachprofilen angeordnet werden. Abstand und Neigung der Lamellen sind frei wählbar. Zudem kann auch zwischen verschiedenen Ausführungen der seitlichen Flachprofilen gewählt werden. Die Kassetten können komplett vormontiert angeliefert werden. Befestigung der Kassetten direkt auf einer strukturellen Unterkonstruktion mithilfe von Bügeln oder Befestigung auf Schwertkonsole.

Materialien und Aufbau

Lamellen: Aluminium-Strangpressprofil, Legierung EN AW-6063 T66 Die seitlichen Flachprofile werden aus Aluminium (AlMg3) oder Stahl gefertigt, Materialstärke ist gemäß den Abmessungen, dem Gewicht und der lokalen Windbelastung berechnet.

Blechschrauben und Befestigungsmittel bestehen aus Edelstahl.

Oberflächenbehandlung

- E6/EV1 eloxiert (20 Mikron) (Alu-Teile)
- Polyester-Pulverbeschichtung (60 80 Mikron) in RAL-Farben

Lamellentyp

Mit den Lamellen SE.096, SE.130 und SE.176 ausführbar.

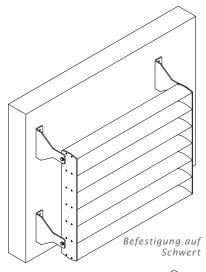
Lamellenhalter

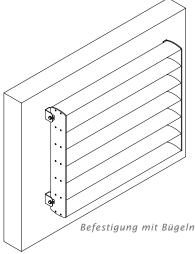
Nicht zutreffend

Neigungswinkel der Lamellen

Standardmäßig haben die Lamellen eine Neigung von 45°. Auf Wunsch ist die Neigung frei wählbar.

Lamellenabstand

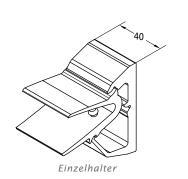

Standardmäßig haben die Lamellen vom Typ SE.096 einen Abstand von 100 mm. Bei den Lamellentypen SE.130 und SE.176 wird ein Abstand von 133 mm beziehungsweise 176 mm empfohlen. Auf Wunsch ist der Abstand frei wählbar.

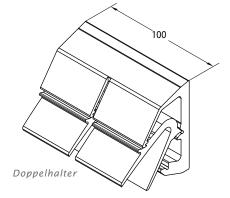

Maximale Spannweiten

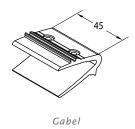
Empfohlene Maximallänge der Lamellen:

Lamellentyp		Windbelastung	
	650 Pa	800 Pa	1250 Pa
SE.096	1350 mm	1220 mm	1000 mm
SE.130	2000 mm	1800 mm	1440 mm
SE.176	2000 mm	1800 mm	1440 mm

Befestigung Icarus® Quickfix® < Technische Details


Halter


Es gibt vier Typen von Quickfix® Haltern, die mit diversen Gabelprofilen kombiniert werden können, in Funktion von der Lamellenneigung:


- Type 1: für Lamellen ICA.100 und ICA.125:
 - Klipshalter und Gabel, wahlweise mit Lamellen-Neigungswinkel von 90° / 45° oder 75° / 60°.
- Type 2: für Lamellen ICA.150, ICL.150, ICA.200 und ICL.200:
 - Klipshalter und zwei Gabeln, wahlweise mit Lamellen-Neigungswinkel von 90° oder 45° beziehungsweise eines Lamellen-Neigungswinkel von 75° oder 60°.
- Type 3: für Lamellen ICA.250, ICA.300 und ICL.300:
 - Klipshalter und zwei Gabeln, wahlweise mit Lamellen-Neigungswinkel von 90° oder 45° beziehungsweise eines Lamellen-Neigungswinkel von 75° oder 60°.
- Type 4: für Lamellen ICA.400:
 - Klipshalter und zwei Gabeln, wahlweise mit Lamellen-Neigungswinkel von 90° oder 45° beziehungsweise eines Lamellen-Neigungswinkel von 75° oder 60°.

Die Quickfix® Halter sind als Einzel- und Doppelhalter erhältlich.

Breiten der Icarus® Quickfix® Komponenten:

Übersicht erhältliche Quickfix® Halter:

lcarus®	us® Quickfix® Neigungswinkel der Lamellen						n		
		4	5°	60°		7	5°	90°	
Haltertyp	Lamellen- Typ	Einzel- halter	Doppel- halter	Einzel- halter	Doppel- halter	Einzel- halter	Doppel- halter	Einzel- halter	Doppel- halter
T . 1	ICA.100	IQ.1101	IQ.1201	IQ.1102	IQ.1202	IQ.1102	IQ.1202	IQ.1101	IQ.1201
Typ 1	ICA.125	IQ.1101	IQ.1201	IQ.1102	IQ.1202	IQ.1102	IQ.1202	IQ.1101	IQ.1201
	ICA.150	IQ.2101	IQ.2201	IQ.2102	IQ.2202	IQ.2102	IQ.2202	IQ.2101	IQ.2201
T 2	ICL.150	IQ.2101	IQ.2201	IQ.2102	IQ.2202	IQ.2102	IQ.2202	IQ.2101	IQ.2201
Typ 2	ICA.200	IQ.2101	IQ.2201	IQ.2102	IQ.2202	IQ.2102	IQ.2202	IQ.2101	IQ.2201
	ICL.200	IQ.2101	IQ.2201	IQ.2102	IQ.2202	IQ.2102	IQ.2202	IQ.2101	IQ.2201
	ICA.250	IQ.3101	IQ.3201	IQ.3102	IQ.3202	IQ.3102	IQ.3202	IQ.3101	IQ.3201
Typ 3	ICA.300	IQ.3101	IQ.3201	IQ.3102	IQ.3202	IQ.3102	IQ.3202	IQ.3101	IQ.3201
	ICL.300	IQ.3101	IQ.3201	IQ.3102	IQ.3202	IQ.3102	IQ.3202	IQ.3101	IQ.3201
Typ 4	ICA.400	IQ.4101	IQ.4201	IQ.4102	IQ.4202	IQ.4102	IQ.4202	IQ.4101	IQ.4201

Technische Details > Befestigung Icarus® Quickfix®

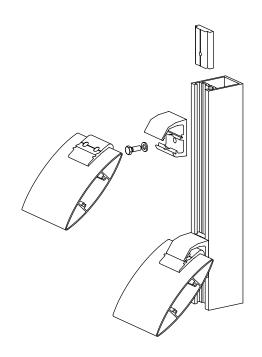
Befestigungs-Sets

Befestigungs-Set IQ.1002

Anwendung: Befestigungs-Set Typ 1, für Quickfix® auf SD-Trägerprofile: Siehe S. 34. Geeignet für Quickfix® System ICA.100 und

Befestigungs-Set IQ.2002

Anwendung: Befestigungs-Set Typ 2, für Quickfix® auf SD-Trägerprofile: Siehe S. 34.
Geeignet für Quickfix® System ICA.150, ICL.150, ICA.200 und ICL.200


Befestigungs-Set IQ.3002

Anwendung: Befestigungs-Set Typ 3, für Quickfix® auf SD-Trägerprofile: Siehe S. 34.
Geeignet für Quickfix® System ICA.250, ICA.300 und ICL.300

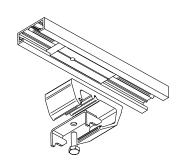
Befestigungs-Set IQ.4002

Anwendung: Befestigungs-Set Typ 4, für Quickfix® auf SD-Trägerprofile: Siehe S. 34. Geeignet für Quickfix® System ICA.400

Sicherheitsbügel

Jede Lamelle muss mindestens an einer Stelle mit einem Sicherheitsbügel gesichtert werden. Der Typ ist vom Lamellen-Typ abhängig.

Sicherheitsbügel Typ 1 - IQ.1001 (ICA.100 und ICA.125)


Sicherheitsbügel Typ 2 - IQ.2001 (ICA.150, ICL.150, ICA.200 und ICL.200)

Sicherheitsbügel Typ 3 - IQ.3001 (ICA.250, ICA.300 und ICL.300)

Sicherheitsbügel Typ 4 – IQ.4001 (ICA.400)

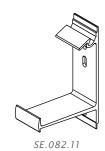
Befestigung Sunclips® < Technische Details

Lamellenhalter

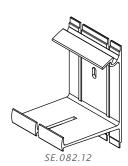
Die Lamellenhalter für Sunclips® vertikale Ausführung auf Trägern sind aus Aluminium hergestellt und haben einen festen Montagewinkel der Lamellen von 45° gegenüber der Senkrechten.


Die Lamellenhalter sind als Einzel- oder Doppelhalter (Lamellen-Stoßbereich) erhältlich.

Lamellenhalter SC.082.11


Anwendung: zur Befestigung einer durchlaufenden Lamelle vom Typ SC.096.01.

Geeignet für Trägerprofil SD.014, SD.054 und SD.100.


Lamellenhalter SC.082.12

Anwendung: zur Befestigung von zwei Lamellen vom Typ SC.096.01. Geeignet für Trägerprofil SD.014, SD.054 und SD.100.

Lamellenhalter SE.082.11

Anwendung: zur Befestigung einer durchlaufenden Lamelle vom Typ SE.096.01, SE.096.02, SE.130.01 und SE.176.01. Geeignet für die Trägerprofile aus dem Linius-Programm vom Typ LD.0065, LD.0195, LD.0440, LD.0460, LD.0995, LD.1250 und Sunclips-Träger SD.014, SD.054 und SD.100 in Kombination mit Adapterprofil LD.0108.

Lamellenhalter SE.082.12

Anwendung: zur Befestigung zwei Lamellen vom Typ SE.096.01, SE.096.02, SE.130.01 und SE.176.01.

Geeignet für die Trägerprofile aus dem Linius-Programm vom Typ LD.0065, LD.0195, LD.0440, LD.0460, LD.0995, LD.1250 und Sunclips-Träger SD.014, SD.054 und SD.100 in Kombination mit Adapterprofil LD.0108.

Technische Details > Befestigung für Icarus® bewegliche Ausführung

Drehachsen-Set

Es sind drei Typen von Drehachsen-Sets erhältlich, gemäß dem bei der Ausführung angewendetem Lamellensystem. Ein Drehachsen-Set besteht aus zwei Edelstahl-Drehachsen (1x lang; 1x kurz), zwei Kunststoff-Lagerbuchsen, einem Kunststoff-Sicherungsring zur Befestigung der Lamelle, zwei Sicherungsmuttern zur Befestigung der Edelstahl-Drehachsen an den Endkappen und einem Set für die Verbindung der Zugstange, bestehend aus einer Bundschraube Ø 8 - M6, einem Kunststoff-Zwischenring M8 und einer Sicherungsmutter M6.

Drehachsen-Set IM.9001

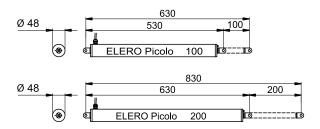
Anwendung: Drehachsen-Set für bewegliches System Typ 1. Geeignet für Lamellentypen ICA.100, ICA.125, ICA.150, ICL.150, ICA.200, ICL.200 und ICP.150, ICP.200/30, ICP.200/40 (*)

Drehachsen-Set IM.9002

Anwendung: Drehachsen-Set für bewegliches System Typ 2. Geeignet für Lamellentypen ICA.250, ICA.300, ICA.360 und ICL.300

Drehachsen-Set IM.9003

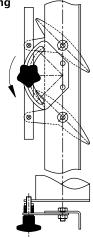
Anwendung: Drehachsen-Set für bewegliches System Typ 3. Geeignet für Lamellentypen ICA.400 und ICA.480


Edelstahl-Motorkonsole IM.9201

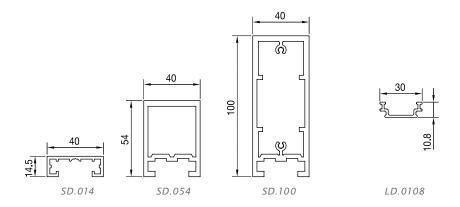
Anwendung: Edelstahl-Motorkonsole zur Befestigung der Motoren auf Unterkonstruktionen. Geeignet für mehrere Motor-Typen.

Icarus® bewegliche Ausführung: Betätigungsmöglichkeiten

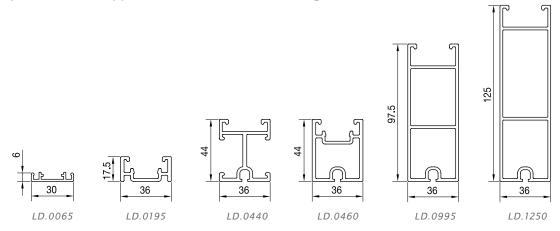
Automatischer Antrieb


Anwendungsbeispiel der Motoren

Der Motoren-Typ ist abhängig von der erforderlichen Hublänge.


Manuelle Betätigung Direkte manuelle

Direkte manuelle Betätigung



Trägerprofile < Technische Details

Trägerprofile vom Typ SD aus dem Sunclips® Programm

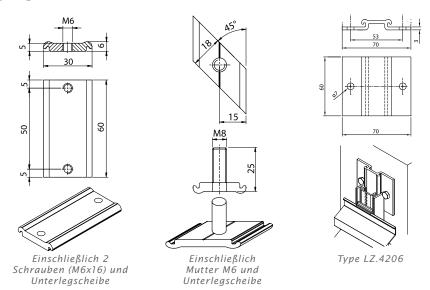
Trägerprofile vom Typ LD aus dem Linius® Programm

Beschreibung

Aluminium-Strangpressprofile, Anwendung als Trägerprofile vertikalem Sonnenschutz.

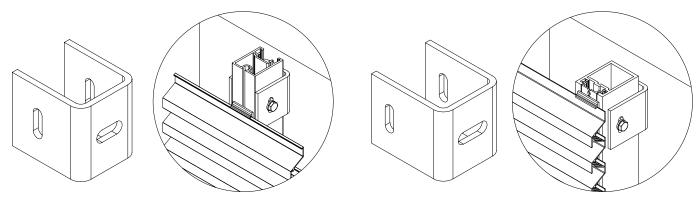
Material

Aluminium-Strangpressprofil, Legierung EN AW-6063 T66

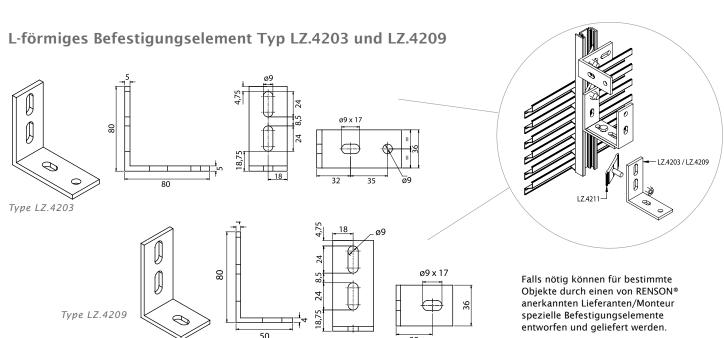

Oberflächenbehandlung

- E6/EV1 eloxiert (20 Mikron)
- Polyester-Pulverbeschichtung (60 80 Mikron) in RAL-Farben

Technische Daten										
	LD.0065	LD.0108 *	LD.0195	LD.0440	LD.0460	LD.0995	LD.1250	SD.014	SD.054	SD.100
Profiltiefe (mm)	6,5	10,8	17,5	44	44	97,5	125	14,5	54	100
Profilbreite (mm)	30	30	36	36	36	36	36	40	40	40
Trägheitsmoment (mm ⁴)	261	987	5931	83228	83348	625740	1219444	4510	208672	1248414
Widerstandsmoment (mm3)	60	147	570	3622	3560	12097	18531	497	7360	24405


Technische Details > Befestigungen für Träger

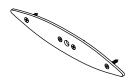
Festes Befestigungselement LZ.4202, LZ.4211 und LZ.4206



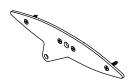
U-förmiger Befestigungsbügel LZ.4210 für Linius-Träger

U-förmiger Befestigungsbügel SD.086.11 für Sunclips-Träger

Einschließlich Schraube (M6 x16), Mutter und Unterlegscheibe


Endkappen für Icarus® < Technische Details

Die Stirnseiten der Icarus® Lamellen werden, je nach Anwendung, mit Endkappen versehen. Die Befestigung der Endkappen erfolgt durch Festschrauben der Endkappen in den Schraubkanälen der Lamellen.


Endkappe - Typ 1: Starr

Anwendung: Montage an den Lamellenenden, beim Icarus® Quickfix® System.

Endkappe - Typ 2: beweglich ohne Betätigungslasche

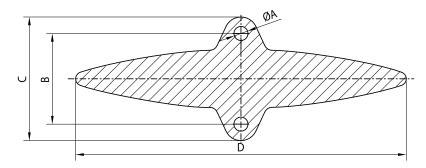
Anwendung: Montage an den Lamellenenden, bei beweglichem Icarus® System – eine Seite ohne Betätigung.

Endkappe - Typ 3: beweglich mit Betätigungslasche

Anwendung: Montage an den Lamellenenden, bei beweglichem Icarus® System – eine Seite mit Betätigung.

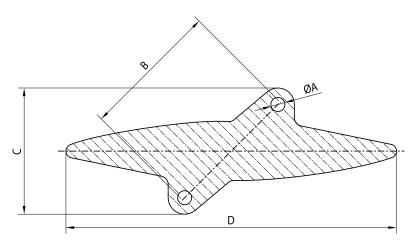
Endkappe - Typ 4: für starre 90°-Befestigung

Anwendung: Montage an den Lamellenenden, unter Neigungswinkel von 90°.


Endkappe - Typ 5: für starre 45'-Befestigung

Anwendung: Montage an den Lamellenenden, unter Neigungswinkel von 45°.

Übersichtstabelle - Endkappen-Typen									
	Endkappen-Typen								
	Typ 1	Typ 2	Тур 3	Typ 4	Typ 5				
ICA.100	ICA.100.11	ICA.100.12	ICA.100.13	ICA.100.14	ICA.100.15				
ICA.125	ICA.125.11	ICA.125.12	ICA.125.13	ICA.125.14	ICA.125.15				
ICA.150	ICA.150.11	ICA.150.12	ICA.150.13	ICA.150.14	ICA.150.15				
ICA.200	ICA.200.11	ICA.200.12	ICA.200.13	ICA.200.14	ICA.200.15				
ICA.250	ICA.250.11	ICA.250.12	ICA.250.13	ICA.250.14	ICA.250.15				
ICA.300	ICA.300.11	ICA.300.12	ICA.300.13	ICA.300.14	ICA.300.15				
ICA.360	ICA.360.11	ICA.360.12	ICA.360.13	ICA.360.14	ICA.360.15				
ICA.400	ICA.400.11	ICA.400.12	ICA.400.13	ICA.400.14	ICA.400.15				
ICA.480	ICA.480.11	ICA.480.12	ICA.480.13	ICA.480.14	ICA.480.15				
ICL.150	ICL.150.11	ICL.150.12	ICL.150.13	ICL.150.14	ICL.150.15				
ICL.200	ICL.200.11	ICL.200.12	ICL.200.13	ICL.200.14	ICL.200.15				
ICL.300	ICL.300.11	ICL.300.12	ICL.300.13	ICL.300.14	ICL.300.15				
ICP.150	ICP.150.11	ICP.150.12	ICP.150.13	ICP.150.14	ICP.150.15				
ICP.200/30	ICP.200.31	ICP.200.32	ICP.200.33	ICP.200.34	ICP.200.35				
ICP.200/40 (*)	ICP.200.11	ICP.200.12	ICP.200.13	ICP.200.14	ICP.200.15				
ICP.300	ICP.300.11	ICP.300.12	ICP.300.13	ICP.300.14	ICP.300.15				


Technische Details > Endkappen für Icarus®

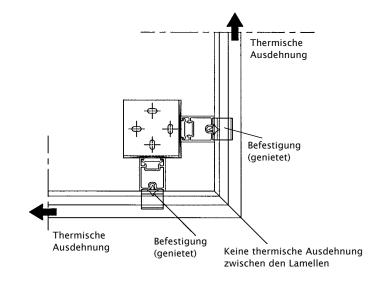
Abmessungen Endkappen-Typ 4, für starre Montage, unter Neigungswinkel von 90°:

Endkappen-Typ	Abmessungen gemäß Skizze (mm)					
	Maß D	Maß ø A	Maß B	Maß C		
ICA.100.14	100	6,5	45	57		
ICA.125.14	125	8,5	45	65		
ICA.150.14	150	8,5	50	70		
ICA.200.14	200	8,5	55	75		
ICA.250.14	250	8,5	65	85		
ICA.300.14	300	8,5	70	90		
ICA.360.14	360	10,5	85	110		
ICA.400.14	400	10,5	85	110		
ICA.480.14	480	10,5	120	150		
ICL.150.14	150	8,5	50	70		
ICL.200.14	200	8,5	60	80		
ICL.300.14	300	8,5	70	90		
ICP.150.14	150	8,5	50	70		
ICP.200.34	200	8,5	50	70		
ICP.200.14	200	8,5	60	80		
ICP.300.14	300	8,5	70	90		

Abmessungen Endkappen-Typ 5 für starre Montage, unter Neigungswinkel von 45°:

Endkappen-Typ	Abmessungen gemäß Skizze (mm)			
	Maß D	Maß ø A	Maß B	Maß C
ICA.100.15	100	6,5	60	55
ICA.125.15	125	8,5	65	66
ICA.150.15	150	8,5	70	70
ICA.200.15	200	8,5	80	77
ICA.250.15	250	8,5	90	84
ICA.300.15	300	8,5	100	94
ICA.360.15	360	10,5	120	110
ICA.400.15	400	10,5	120	110
ICA.480.15	480	10,5	160	144
ICL.150.15	150	8,5	75	73
ICL.200.15	200	8,5	85	80
ICL.300.15	300	8,5	100	94
ICP.150.15	150	8,5	75	73
ICP.200.35	200	8,5	75	73
ICP.200.15	200	8,5	90	84
ICP.300.15	300	8,5	100	94

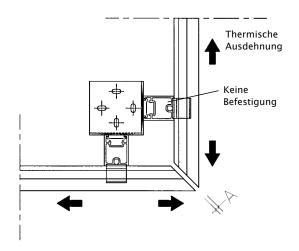
Ecklösungen < Technische Details



Gehrungsschnitte

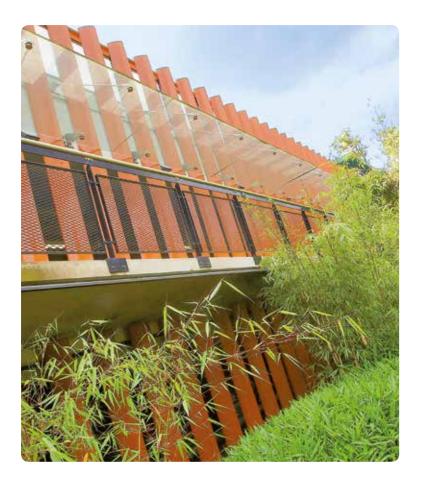
Bei Ecken werden die Lamellen exakt auf Gehrung gesägt, damit diese bei der Montage passgenau anschließen und eine ästhetische Lösung bieten

Mögliche Lösungen für die Montage von Ecken


1.

Thermische Dehnung

Die Träger werden so nah wie möglich im Eck-Bereich montiert.


2.

Dehnungsfuge zwischen den Lamellen im Eck-Bereich

Die Träger werden so nah wie möglich im Eck-Bereich montiert.

Technische Details > Objektlösungen

Diese Broschüre gibt nur einen Überblick über unsere Standardlösungen. Unsere Projektabteilung berät Sie gern und entwickelt gemeinsam mit Ihnen die perfekte Lösung für Ihr spezielles Objekt.

RENSON®: Ihr Partner in Lüftung und Sonnenschutz

RENSON®, mit Hauptsitz in Waregem (Belgien), ist in Europa Trendsetter im Bereich der natürlichen Lüftung und des Sonnenschutzes.

• Creating healthy spaces

Basiert auf einer langjährigen Erfahrung (seit 1909) entwickeln wir energieeinsparende Gesamtlösungen, die ein gesundes und komfortables Innenklima in Gebäuden ermöglichen. Unser bemerkenswerter gemäß dem Healthy Building Konzept gestalteter Hauptsitz spiegelt perfekt die Philosophie und Mission des Unternehmens wieder.

• No speed limit on innovation

Ein multidisziplinares Team von über 80 Mitarbeitern im Bereich der Forschung und Entwicklung optimiert ständig unsere bestehenden Produkte und entwickelt innovative Gesamtlösungen für die Marktanforderungen.

• Strong in communication

Der Kontakt mit dem Kunden ist äußerst wichtig. Ein eigenes Team von über 100 Vertriebsmitarbeitern weltweit und ein starkes internationales Partnernetz beraten die Kunden vor Ort. In unserem neuen EXIT 5 in Waregem können die Kunden unsere Lösungen hautnah erfahren und durch kontinuierliche Schulungen unserer Partner sorgen wir für eine stetige Weiterbildung.

• A reliable partner in business

Dank unserer umweltfreundlichen und modernen Produktionsprozesse (wie z.B. eigener automatischer Pulverbeschichtungs- und Eloxalanlagen, Kunststoff-Spitzgussmaschinen, Werkzeugbau) mit einer Gesamtfläche von 95.000 m² können wir unseren Kunden stets optimale Qualität und Dienstleistung garantieren.

nr Fachhändler	

RENSON[®] behält sich das Recht vor, technische Änderungen an den im Folgenden behandelten Produkten vorzunehmen. Auf **www.renson.eu** können Sie die aktuellsten Broschüren herunterladen.

